Rewarding Learning

ADVANCED
General Certificate of Education
January 2009

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

THURSDAY 29 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the general solution of the equation

$$
\begin{equation*}
\tan \left(2 \theta+\frac{\pi}{4}\right) \cot \left(\frac{\pi}{3}-3 \theta\right)=1 \tag{6}
\end{equation*}
$$

2 (i) Prove, by the method of partial fractions, that

$$
\begin{equation*}
\frac{x^{3}-4 x^{2}+9 x+10}{\left(x^{2}+5\right)(x-3)^{2}} \equiv \frac{x}{x^{2}+5}+\frac{2}{(x-3)^{2}} \tag{8}
\end{equation*}
$$

(ii) Hence solve the differential equation

$$
\begin{equation*}
\left(x^{2}+5\right)\left[(x-3) \frac{\mathrm{d} y}{\mathrm{~d} x}-y\right]=x^{3}-4 x^{2}+9 x+10 \tag{10}
\end{equation*}
$$

given that $y=-2$ when $x=4$

3 (i) Use Maclaurin's theorem to write out the series expansion for $\ln (1+x)$ up to the term in x^{5}
(ii) Hence write out the series expansion for

$$
\begin{equation*}
\ln \left(\frac{1+x}{1-x}\right) \tag{3}
\end{equation*}
$$

(iii) Hence find an approximation for $\ln 2$ in the form $\frac{n}{1215}$, where n is a natural number.

4 (a) Find the exact integer value of

$$
\begin{equation*}
\frac{\left(\cos \frac{\pi}{7}+i \sin \frac{\pi}{7}\right)^{3}}{\left(\cos \frac{\pi}{7}-i \sin \frac{\pi}{7}\right)^{4}} \tag{4}
\end{equation*}
$$

(b) Find the roots of the equation

$$
z^{4}+4=0
$$

and plot them on an Argand diagram.

5 (i) If $\mathbf{A}=\left(\begin{array}{ll}x & 1 \\ 0 & 1\end{array}\right)$ prove by the method of mathematical induction that

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
x^{n} & \frac{x^{n}-1}{x-1} \\
0 & 1
\end{array}\right)
$$

where n is a positive integer and $x \neq 1$
(ii) Hence if $\mathbf{B}=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$, find \mathbf{B}^{10}

6 The ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ is shown in Fig. 1 below.

Fig. 1
(i) Prove that $S(1,0)$ is a focus of the ellipse and that the line $x=4$ is a directrix.
(ii) Verify that the point P on the ellipse can be represented parametrically as $(2 \cos \theta, \sqrt{3} \sin \theta)$
(iii) Show that the equation of the tangent to the ellipse at P can be written as

$$
\begin{equation*}
\frac{x}{2} \cos \theta+\frac{y}{\sqrt{3}} \sin \theta=1 \tag{6}
\end{equation*}
$$

The point where the tangent at P meets the directrix $x=4$ is Q .
(iv) Prove that $\mathrm{P} \hat{S Q}$ is a right angle.

