Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2009

Mathematics

Assessment Unit C2
assessing
Module C2: AS Core Mathematics 2
[AMC21]
THURSDAY 15 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 In a triangle ABC
$\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=9 \mathrm{~cm}$ and angle $\mathrm{A}=39^{\circ}$
Find:
(i) the length of BC ,
(ii) the angle C .

2 (a) Integrate with respect to x

$$
\begin{equation*}
3-2 \sqrt{x}+3 x^{-2} \tag{4}
\end{equation*}
$$

(b) Use the trapezium rule with 5 ordinates to find an approximate value for

$$
\begin{equation*}
\int_{0}^{2} 2^{x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

3 (i) Write down the centre and find the radius of the circle whose equation is

$$
\begin{equation*}
x^{2}+y^{2}+8 x-2 y-9=0 \tag{3}
\end{equation*}
$$

(ii) Show that the point $\mathrm{P}(-5,-4)$ lies on the circle.
(iii) Find the equation of the tangent to the circle at the point P .

4 (a) (i) Use the binomial expansion to expand

$$
\begin{equation*}
\left(1+\frac{x}{2}\right)^{10} \tag{4}
\end{equation*}
$$

in ascending powers of x up to and including the term in x^{3}
(ii) By choosing a suitable value of x, use the expansion to find the value of $(1.005)^{10}$ correct to 5 decimal places.
(b) A married couple, Nicole and Brad, take out savings' investment plans. Nicole plans to save $£ 225$ in the first year, $£ 275$ in the second year, $£ 325$ in the third year and so on increasing the annual amount saved by $£ 50$

Using the fact that her planned savings form an arithmetic progression,
(i) find the amount that Nicole plans to save in the 10th year of her savings plan,
(ii) find the total amount that Nicole plans to save over a 20 year period.

Brad plans to save $£ 14000$ over a 20 year period.
He plans to save $£ P$ in the first year. His planned annual savings form an arithmetic progression with common difference $£ 60$
(iii) Find the value of P

5 (i) Show that

$$
\begin{equation*}
5-2 \cos \theta-8 \sin ^{2} \theta=8 \cos ^{2} \theta-2 \cos \theta-3 \tag{3}
\end{equation*}
$$

(ii) Hence, solve the equation

$$
5-2 \cos \theta-8 \sin ^{2} \theta=0
$$

for $0^{\circ}<\theta \leqslant 180^{\circ}$

6 Fig. 1 below shows a baseball court in a children's playground.

Fig. 1
The dimensions of the court are shown in Fig. 2 below.

Fig. 2
O is the centre of a circle, radius 4 m .
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}=25 \mathrm{~m}$.
Angle COD $=\frac{\pi}{3}$ radians.
Find:
(i) the perimeter of the baseball court,
(ii) the area of the baseball court.

7 The curves $y=3 x-x^{2}$ and $y=x^{2}$ are shown in Fig. 3 below.
The curves intersect at the origin and at the point A .

Fig. 3
(i) Show that the x coordinate of A is $1 \frac{1}{2}$
(ii) Hence, find the shaded area bounded by the curves

$$
\begin{equation*}
y=3 x-x^{2} \text { and } y=x^{2} \tag{6}
\end{equation*}
$$

8 Solve the equation

$$
\begin{equation*}
\log _{x} 9=2 \log _{3} x+3 \tag{8}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

