Rewarding Learning

ADVANCED SUBSIDIARY (AS)
 General Certificate of Education
 January 2009

Mathematics

Assessment Unit F1
 assessing

Module FP1: Further Pure Mathematics 1
[AMF11]

TUESDAY 13 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 The matrix \mathbf{A} is given by

$$
\left(\begin{array}{cc}
10 & 6 \\
3 & 3
\end{array}\right)
$$

(i) Show that the eigenvalues of \mathbf{A} are 1 and 12
(ii) Find an eigenvector corresponding to the eigenvalue 1

2 (i) The matrix $\mathbf{N}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
What transformation does this matrix represent?

The transformation represented by the matrix \mathbf{M} maps the points $P(2,-3)$ and $Q(4,0)$ onto $\mathrm{P}^{\prime}(-1,-5)$ and $\mathrm{Q}^{\prime}(4,-4)$ respectively.
(ii) Find the matrix \mathbf{M}.

The triangle $\mathrm{OP}^{\prime} \mathrm{Q}^{\prime}$ is the image of the triangle OPQ under the transformation represented by \mathbf{M}.
(iii) Find the area of the triangle ${O P^{\prime}}^{\prime} \mathrm{Q}^{\prime}$.

The matrix \mathbf{S} represents the combined effect of the transformation represented by \mathbf{M} followed by the transformation represented by \mathbf{N}.
(iv) Find the matrix \mathbf{S}.

3 Let the matrix $\mathbf{T}=\left(\begin{array}{ccc}2 & 4 & 2 \\ \lambda & 12 & 5 \\ 1 & 8 & \lambda\end{array}\right)$
(i) Find, in terms of λ, the determinant of \mathbf{T}.
(ii) Find the values of λ for which an inverse exists.
(iii) If $\lambda=2$, find the inverse of \mathbf{T}.
(iv) If $\lambda=3$, find the value of μ for which the following system of equations has infinitely many solutions.

$$
\begin{align*}
& 2 x+4 y+2 z=\mu \\
& \lambda x+12 y+5 z=7 \\
& x+8 y+\lambda z=6 \tag{3}
\end{align*}
$$

$4 \mathbf{S}$ is the set of matrices $\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$, where x is any real number.
(i) Prove that \mathbf{S} is closed under matrix multiplication.
(ii) Find the identity element of \mathbf{S} under matrix multiplication.
(iii) Find the inverse of $\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$ under matrix multiplication.
(iv) Assuming that matrix multiplication is associative, what can now be stated about the set \mathbf{S} under matrix multiplication?

5 Two circles have equations

$$
\begin{aligned}
& x^{2}+y^{2}+6 y-16=0 \\
& x^{2}+y^{2}-24 x-12 y+80=0
\end{aligned}
$$

Find the point of intersection of the circles and hence show that the circles touch externally.

6 (a) The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=10+5 \mathrm{i} \text { and } z_{2}=2-\mathrm{i}
$$

(i) Find $\frac{z_{1}}{z_{2}}$, giving your answer in the form $a+b \mathrm{i}$, where a and b are real numbers.
(ii) Find the modulus and argument of $\frac{z_{1}}{z_{2}}$
(b) (i) Sketch on an Argand diagram the locus of those points w which satisfy

$$
\begin{equation*}
|w-(10+5 \mathrm{i})|=|w-(2-\mathrm{i})| \tag{3}
\end{equation*}
$$

(ii) On the same diagram sketch the locus of those points z which satisfy

$$
\begin{equation*}
|z-(10+5 i)|=6 \tag{3}
\end{equation*}
$$

(iii) On your diagram shade the region which represents the locus of v where v satisfies both

$$
\begin{equation*}
|v-(10+5 \mathrm{i})| \leqslant|v-(2-\mathrm{i})| \text { and }|v-(10+5 \mathrm{i})| \leqslant 6 \tag{2}
\end{equation*}
$$

