ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS6 Statistics 6

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
0e		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
$\mathbf{w r}$
$\mathbf{f b}$

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
mark as in scheme
zero marks unless specified otherwise

More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as
appropriate

Mathematics and Statistics B Statistics 6 MBS6 June 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0} \quad \eta_{d}=0 \\
\& \mathrm{H}_{1} \quad \eta_{d} \neq 0 \\
\& 2 \text { tail test } 10 \% \text { level }
\end{aligned}
\] \\
Signs or differences
\[
++-\ldots++-\quad+++
\] \\
test stat \(7^{+} / 3^{-}\)
\[
\mathrm{B}(10,0.5) \text { model }
\]
\[
\mathrm{P}\left(\geq 7^{+}\right)=\mathrm{P}\left(\leq 3^{-}\right)=0.172
\] \\
\(0.172>0.05\) \\
Hence, no significant evidence to reject \(\mathrm{H}_{0}\) \\
There is no significant evidence to suggest a difference in median prices between the two supermarkets
\[
P(\text { Type II error })=0
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \[
\begin{aligned}
\& 5 \\
\& 1
\end{aligned}
\] \& \begin{tabular}{l}
or \\
\(\mathrm{H}_{0}\) Population median price same for both supermarkets \\
\(\mathrm{H}_{1}\) Population median price not the same for both supermarkets \\
M1 if model seen to be used \\
Comparison with 0.05 or use of identified critical region
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline \begin{tabular}{l}
2 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{4} \times \frac{1}{3} \times \frac{1}{5}=\frac{1}{60} \text { or } 0.167 \text { or } 16.7 \% \\
\& 1-\frac{1}{60}=\frac{59}{60} \text { or } 0.983 \text { or } 98.3 \% \\
\& {\left[\frac{1}{4} \times \frac{2}{3} \times \frac{4}{5}\right]+\left[\frac{3}{4} \times \frac{1}{3} \times \frac{4}{5}\right]+\left[\frac{3}{4} \times \frac{2}{3} \times \frac{1}{5}\right]} \\
\& =\frac{8}{60}+\frac{12}{60}+\frac{6}{60}=\frac{26}{60} \text { or } \frac{13}{30} \\
\& \text { or } 0.433 \text { or } 43.3 \% \\
\& \frac{6}{26} \text { or } \frac{3}{13} \text { or } 0.231 \text { or } 23.1 \%
\end{aligned}
\] \& M1
A1
B1
M1
M1
A1
M1 A1 \& 2
1

3

2 \& | For product |
| :--- |
| For 3 products attempted For sum |
| M1 for use of 26 as denominator |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

MBS6 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	The 'highest' negative difference from 250 is $28(222-250=-28)$ and, if the remaining 6 batteries had lifetimes in excess of 280 hours, their positive differences from 250 will all be greater than 30 .	E1		Evidence of consideration of differences
	This means that the ranks assigned will be $10,11,12,13,14,15$	E1	2	Understanding that 'missing' 6 will take the top 6 rank values.
(ii)	$\mathrm{H}_{0} \quad \eta=250$	B1		
	$\mathrm{H}_{1} \quad \eta>250$			H_{0} Population median(average) $=250$
	1 tail test 5\% sig level Differences			H_{1} Population median(average) >250 sc B1 here for no 'pop' if B0 for no pop in Q1
	$-28,-22,-15,-8,-2,+1,+9,+10,+25$ and 6 in excess of 250	M1		Differences seen
	Ranks $-9,-7,-6,-3,-2,+1,+4,+5,+8$ $\text { and then }+10,+11,+12,+13,+14,+15$	m1		Rank orders
	$\begin{aligned} & T_{+}=1+4+5+8+10+\ldots+15=93 \\ & T_{-}=9+7+6+3+2=27 \end{aligned}$	m1		Attempt at total of ranks (+ or -)
	Test stat $T=27$ Critical value, $n=151$ tail, 5%	A1		Both totals OK or sight of $\mathrm{cv}=30$
	$\mathrm{cv}=30$	B1		For cv
	$T<30$	M1		Comparison of T with cv Do not allow $\mathrm{cv}=8$
	Significant evidence to reject H_{0} There is significant evidence to suggest that the median lifetime of the new batteries is more than 250 hours.	A1	8	
(b)	Battery lifetimes are symmetrically distributed Batteries in trial were selected at random	B1 B1	2	
	Total		12	

MBS6 (cont)

MBS6 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{11}{*}{5(a)} \& H_{0} Samples are from identical populations \& B1 \& \& B1 if wording not exact but 1 tail idea

\hline \& H_{1} Samples are not from identical populations - average starting salary for students who went to 'Top League' universities is higher 1 tail test 5% sig level Ranks \& B1 \& \&

\hline \& 'Top League' \& M1 \& \& for ranks as one group

\hline \& $$
\begin{array}{|lllllllll}
8 & 4 & 14 & 12 & 18 & 17 & 20 & 11 \\
\text { Other }
\end{array}
$$ \& A1 \& \&

\hline \& $\begin{array}{lllllllllllll}1 & 3 & 5 & 6 & 7 & 10 & 13 & 15 & 169 & 19\end{array}$ \& A1 \& \&

\hline \& $T_{\text {Top League }}=104$ \& m1 \& \& for totals, either correct

\hline \& $T_{\text {Other }}=106$ \& A1 \& \&

\hline \& $U_{\text {Top League }}=104-1 / 2(8 \times 9)=68$ \& m1 \& \& for U values, either

\hline \& $U_{\text {Other }}=106-1 / 2(12 \times 13)=28$ test stat $U=28$ \& A1 \& \& note: various other alternative methods accepted

\hline \& critical value $=26$ \& B1 \& \& for use of correct cv consistent with U

\hline \& test stat > 26 Accept H_{0} No significant evidence (just) to suggest that the samples are from different populations (or no evidence to suggest that there is a difference in average starting salary for the two university groups) \& M1

A1 \& 12 \&

\hline \multirow[t]{2}{*}{(b)} \& | Max value $(13+14+15+\ldots+19+20)-1 / 2(8 \times 9)$ |
| :--- |
| or $(9+10+11+\ldots \ldots+19+20)-1 / 2(12 \times 13)$ | \& M1 \& \& For 174/132

\hline \& Max $U=96$ \& A1 \& 2 \& Other methods possible

\hline \multirow[t]{2}{*}{(c)(i)} \& Students in the trial should be matched according to subject area studied and gender so that a range of identical subjects are covered at each type of university. \& E1 \& \& Concept of 'matched pairs' explained.

\hline \& in each of a range of subject areas, at each type of university, would then be involved in the trial. \& E1, E1 \& 3 \& Full explanation with some detail of subject relevance and gender

\hline \multirow[t]{2}{*}{(ii)} \& Wilcoxon signed-rank test or sign test \& B1 \& 1 \&

\hline \& Total \& \& 18 \&

\hline \& TOTAL \& \& 60 \&

\hline
\end{tabular}

