version: 1.0 9/9/2005

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS4 Statistics 4

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
√or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
– <i>x</i> ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Mathematics and Statistics B Statistics 4 MBS4 June 2005

Q	Solution	Marks	Total	Comments
1	$\overline{x} = 4.16667$ s = 0.5431	B1		4.17 (4.16 to 4.17)
	95% confidence interval for mean	B1		0.543 (0.542 to 0.544) may be implied by
				correct final answer
	0.5431	M1		Use of their $\frac{\text{s.d}}{\sqrt{9}}$
	$4.16667 \pm 2.306 \times \frac{0.5431}{\sqrt{9}}$			V -
	V)	B1 B1√		8df 2.306 - their df
	4 167 + 0 147	m1		completely correct method their <i>t</i>
	4.167 ± 0.147	A1	7	$4.17(4.16 \text{ to } 4.17) \pm 0.417(0.417 \text{ to } 0.418)$
	3.75 ~ 4.58			or 3.75(3.745 to 3.755) and 4.58(4.58 to 4.59)
				01 5.70(5.7 to to 5.700) and 1.00(1.00 to 1.00)
	Total		7	
2(a)	D P DN			
	< 65 4 2.70 12 7.72 6 11.58	3.41		al. a. 1 Can E? a
	≥ 65	M1		method for E's
	Pooling D&P			
	D&P DN			
	< 65 16 10.42 6 11.58	m1		correct method for pooling - must be D&P
	≥ 65 38 43.58 54 48.42			
	II . A marriam mot approximated with a co	D1		correct null hypothesis - may be implied
	H ₀ : Answer not associated with age	B1		by clearly stated conclusion
	H ₁ : Answer associated with age			
				attempt at $\sum \frac{(O-E)^2}{E}$ - their figures
	$\frac{\left(\left O-E\right -0.5\right)^{2}}{E} = \frac{\left(\left O-E\right -0.5\right)^{2}}{E}$	M1		attempt at $\sum {E}$ - their figures
	E	m1		attempt at Yates' correction
		m1		correct method for Yates'
	$\frac{5.08^2}{}$ = 5.83	A1		5.83 (5.81 to 5.85)
	(1 1 1 1)			3.03 (3.01 to 3.03)
	$\left(\frac{10.42}{10.42} + \frac{11.58}{11.58} + \frac{43.58}{43.58} + \frac{48.42}{48.42}\right)$			
		~.		
	$c.v\chi_1^2$ is 3.841	B1		1 df or 2 df if no pooling
		B1		3.841 or 3.84 (allow 5.991/5.99 if no pooling)
	Reject H ₀ , conclude evidence to suggest	A1√	10	correct conclusion - must be compared
	that answer is associated with age.			with upper tail of χ^2
(b)	Older delegates more likely to answer that	E1	1	Older delegates less likely to answer that
	they would not change their votes.	_	-	they would change their votes
(c)	Most delegates are over 65	E1	1	Most delegates are elderly
	Total		12	

MBS4 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$E(Y) = 0 \times 0.58 + 1 \times 0.27 + 2 \times 0.10 +$	M1		method
	$3 \times 0.05 = 0.62$	A1		0.62 cao
(ii)	$E(Y^2) = 0^2 \times 0.58 + 1^2 \times 0.27 + 2^2 \times 0.10 +$	M1		method for $E(Y^2)$ – or equivalent
	$3^2 \times 0.05 = 1.12$			need not be called $E(Y^2)$
	$s.d = \sqrt{1.12 - 0.62^2} = 0.858$	m1		method for standard deviation - allow variance if called variance
		A1		0.858 (0.857 to 0.858)
(iii)	$E(Y^3) = 0^3 \times 0.58 + 1^3 \times 0.27 + 2^3 \times 0.10 +$	M1		method
	$3^3 \times 0.05 = 2.42$	A1	7	2.42 cao
(b)(i)	0	B1		0 cao
(ii)	0	B1	2	0 cao
(c)(i)	mean allows comparison with cost of annual ticket	B1 E1	2	mean allows comparison with cost of annual ticket / median, mode unrepresentative
(ii)	Expected weekly cost without annual ticket $0.62 \times £4.50 = £2.79$	M1		attempt (not necessarily use of 0.62) to compare weekly or annual cost of two methods
	Weekly expenditure on annual ticket 120/52 = £2.31 (Or annual cost £145.08 or £120) annual ticket cheaper	A1	2	£2.79 cao or £145.08 (145 to 145.2) or equivalent (must use 0.62 and disallow for incorrect conclusion)
(iii)	Have to pay in advance / may change cinema going habits	E1	1	reason - generous
	Total		14	

MBS4 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$197 \pm 1.96 \times \frac{103}{\sqrt{90}}$	M1		use of $\frac{103}{\sqrt{90}}$
	V > 0	B1		1.96 (or allow 1.987 to 1.99)
	197 ± 21.3	m1		completely correct method - their z
		A1	4	$197 \pm 21.3(21.2 \text{ to } 21.7) \text{ or}$
	176 ~ 218			176(175 to 176) and 218 (218 to 219)
(ii)	42.6	B1	1	42.6(42.5 to 42.6) or 43.2(43.1 to 43.3) if
				t is used
(iii)	$2z \times \frac{103}{\sqrt{90}} = 30$	M1		reasonable attempt at equation containing
	$\frac{22}{\sqrt{90}}$ $\frac{1}{\sqrt{90}}$	1411		z - ignore omission of 2
		m1		completely correct equation containing z
	z = 1.382	m1		method for finding z - allow omission of 2
	1-0.9614			
	1-0.5014			
	-1.382 1.382			
	1 - 2(1 - 0.9164) = 0.833	M1		method for probability - their z
	83.3%	A1	5	83.3 (83 – 83.5)
(iv)	$2 \times 2.5758 \times \frac{103}{\sqrt{n}} = 30$	B1		2.5758 (2.57 to 2.58)
	\sqrt{n}	M1		reasonable attempt at equation involving <i>n</i> - ignore omission of 2, incorrect <i>z</i>
	n = 312.8	m1		method of solution of equation
	313 needed	A1	4	313 (310 to 315)
(b)(i)	large sample \rightarrow sample mean normally	E1	7	large sample / CLT
(~)(-)	distributed	E1	2	mean normally distributed
(ii)	Mean less than 2 s.d. above zero \rightarrow non-	E1		mean less that 2 s.d. above zero /
	trivial probability of negative values			possibility of
	which are not possible	E1	2	negative values / money discrete variable / normal continuous
	Total		18	normal continuous
5(a)(i)	1	B1	10	1 cao
(ii)	1.54	B1		1.54 cao
(iii)	1.56	B1		1.56 cao
(iv)	1.73	B1		1.73 cao
(v)	1	B1	5	1 cao
(b)(i)	0.5 - 0.291 = 0.209	M1	2	method
(ii)	0.0751	A1 M1	2	0.209 cao method
(11)	$\sqrt{0.0751} = 0.274$	A1	2	0.274 (0.2735 to 0.2745)
		7.1	_	allow B1 for variance = 0.0751
(iii)	$E(X^2) - 1.54^2 = 0.0751$	M1		any correct equation
	$E(X^2) = 2.45$	A1	2	2.45 (2.44 to 2.45)
	Total		11	

MBS4 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\bar{x} = 46.5$ $s = 10.81$	B1		46.5 cao and 10.8 (10.8 to 10.82)
	$H_0: \mu = 40$	B1		one correct hypothesis – generous
	$H_1: \mu \neq 40$	B1		both hypotheses correct – ungenerous
	•			Allow $H_1 \mu > 40$
	(46.5 - 40)	M1		use of their $\frac{s.d}{\sqrt{8}}$
	$t = \frac{(46.5 - 40)}{10.81} = 1.70$			1
	$\frac{10.01}{\sqrt{8}}$	m1		completely correct method for <i>t</i> ignore sign
	•	A1		1.70 (1.695 to 1.705)
	c.v $t_7 \pm 2.365$; 1.70 lies between	D.1		7.10
	,	B1 B1√		7df 2.365 – their df – ignore sign
	± 2.365 so accept H ₀ , mean is 40 mins	DI√		(cv 1.895 for one tail test)
		A1√		correct conclusion – must be compared
	Alternatively Allow confidence interval			with t
	approach			
(ii)	$H_0: \mu = 50$	B1		both hypotheses correct – ungenerous
	$H_1: \mu \neq 50$			Allow $H_1 \mu < 50$
	(16.5. 50)			
	$t = \frac{(46.5 - 50)}{\frac{10.81}{\sqrt{8}}} = -0.916$			
	$\frac{10.81}{\sqrt{2}}$	A1		-0.916 (-0.915 to -0.916)
	V •			(cv 1.895 for one tail test)
	c.v $t_7 \pm 2.365$; -0.916 lies between		10	
	± 2.365 so accept H ₀ , mean is 50 mins	A1√	12	correct conclusion must be compared with both tails or lower tail of <i>t</i>
	Alternatively Allow confidence interval			oour unis or lower uni or t
	approach			
				N.B. Mark a(ii) as a(i) and a(i) as a(ii) if
				more favourable
(b)	Claim 1. C Not true – no null hypothesis	E2,1		correct conclusion for correct reason – be
	rejected so no Type 1 error made			generous for E1 but disallow no or clearly incorrect reason
				incorrect reason
	Claim 2. B Possibly true – true if	E2,1		correct conclusion for correct reason – be
	population mean is equal to neither 40 nor			generous for E1 but disallow no or clearly
	50			incorrect reason
	Claim 3. A Definitely true – since mean	E2,1	6	correct conclusion for correct reason – be
	cannot equal both 40 and 50	124,1	U	generous for E1 but disallow no or clearly
	•			incorrect reason
	Total		18	
	TOTAL		80	