ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS3 Statistics 3

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
mark as in scheme
zero marks unless specified otherwise

More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as
appropriate

Mathematics and Statistics B Statistics 3 MBS3 June 2005

Q	Solution	Marks	Total	Comments
1 (a)(i)	$\frac{87}{170} \text { or } 0.512 \text { or } 51.2 \%$	B1	1	
(ii)	$\frac{18}{170} \text { or } \frac{9}{85} \text { or } 0.106 \text { or } 10.6 \%$	B1	1	
(iii)	$\frac{96}{170} \text { or } \frac{43}{85} \text { or } 0.565 \text { or } 56.5 \%$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For attempt at $18+46+23+9$
(iv)	$\frac{9}{8}$ or 0.108 or 10.8%	M1		For numerator
	$\overline{83}$	M1		For denominator
		A1	3	
(b)	Resident occupies a two-bedroomed apartment and replies excessive	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2	Correct description No negatives, description clear If "given" used E1 only
	Total		9	
2 (a)	$\mathrm{H}_{0} \quad \eta_{d}=0$	B1		or
	$\mathrm{H}_{1} \quad \eta_{d} \neq 0$			H_{0} Population median price same for both supermarkets
	2 tail test 10% level			H_{1} Population median price not the same for both supermarkets
	Signs			
	+ + - . + + - - + + + test stat $7^{+} / 3$	M1 A1		Or differences
	B ($10,0.5$) model	M1		M1 if model seen to be used
	$\mathrm{P}\left(\geq 7^{+}\right)=\mathrm{P}\left(\leq 3^{-}\right)=0.172$			
	$0.172>0.05$	M1		Comparison with 0.05 or use of identified critical region
	Hence, no significant evidence to reject H_{0}			
	There is no significant evidence to suggest a difference in median prices between the two supermarkets	A1	6	
(b)	Conclude that there is a difference in prices between the supermarkets when, in	E1		Explanation of Type I error
	fact, there is no difference.	E1	2	Explanation in context
(c)	Wilcoxon signed-rank	B1	1	
	Total		9	

MBS3 (cont)

MBS3 (cont)

MBS3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	H_{0} Samples are from identical populations	B1		
	H_{1} Samples are not from identical populations - average starting salary for students who went to 'Top League' universities is higher 1 tail test 5% sig level	B1		
	Ranks 'Top League' $\left.\begin{array}{llllllllll} 8 & 4 & 11 & 10 & 13 & 15 & & \\ \text { Other } & & & & & \\ \hline & 3 & 5 & 6 & 7 & 9 & 14 & 12 & 2 \end{array}\right)$	M1 M1 A1 A1 m1 A1		for ranks as one group (can be reversed) for totals, either correct
	$\begin{aligned} U_{\text {Top League }} & =61-1 / 2(6 \times 7)=40 \\ U_{\text {Other }} & =59-1 / 2(9 \times 10)=14 \end{aligned}$ test stat $U=14$	m1 A1		for U values, either note: various other alternative methods accepted
	critical value $=12$ test stat >12 Accept H_{0} No significant evidence (just) to suggest that the samples are from different populations (or no evidence to suggest that there is a difference in average starting salary for the two university groups)	M1 B1 m1 A1	14	for use of correct cv consistent with U for comparison ts/cv
(b)	Result might be influenced by such factors as gender or subject studied so a matched pairs design would reduce risk of experimental error as a consequence. People might have lied about their salaries as they were asked to state, not provide verification. Obtaining verification would eliminate this problem. Sample sizes should be more evenly balanced.	E1 E1	2	For concept of likelihood of experimental error - with reason - and matched pairs preferred Other sensible reason Other methods possible
(c)	$(10+11+12+13+14+15)-1 / 2(6 \times 7)$ or $(7+8+9+10+\ldots \ldots \ldots+15)-1 / 2(9 \times 10)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		For 75 or 99
	$\operatorname{Max} U=54$	A1	3	
	Total		19	
	TOTAL		60	

