ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS1 Statistics 1

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
$\mathbf{~ w r ~}$
fb

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working Incorrect answer without working
mark as in scheme
zero marks unless specified otherwise
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Statistics 1 MBS1 June 2005

Q	Solution	Marks	Total	Comments
$1(\mathrm{a})$ (b) (c)	Binomial $n=6 \quad p=0.3$ $\mathrm{P}(2 \text { or fewer })=0.744$ $\begin{aligned} & \mathrm{P}(>3)=1-\mathrm{P}(3 \text { or fewer }) \\ & =1-0.925 \\ & =0.0705 \end{aligned}$ $P(6)=1-0.9993=0.0007$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	7	Binomial $\begin{aligned} & n=6 \quad p=0.3 \\ & 0.744 \quad(0.744 \text { to } 0.745) \\ & \mathrm{P}(>3)=1-\mathrm{P}(3 \text { or fewer }) \text { or equivalent } \\ & 0.0705 \quad(0.07 \text { to } 0.071) \\ & 0.0007(0.0007 \text { to } 0.0008) \end{aligned}$
	Total		7	
2(a)	Sally IQR $8132-4189=3943$ Outliers $>8132+1.5 \times 3943=14046.5$ Or $<4189-1.5 \times 3943=-$ ve No outliers Ranjit IQR 7189-5013=2176 Outliers $>7189+1.5 \times 2176=10453$ $\text { Or }<5013-1.5 \times 2176=1749$ Only outlier is 11248 See plots on next page Similar average Ranjit less variable apart from one outlier	M1 M1 A1 Al $\sqrt{ }$ M1 M1 M1 A1 E1 E1	4 2	Method for calculating limit for one upper outlier-allow $1,1.5$ or 2 times IQR Method for one lower outlier-allow 1, 1.5 or 2 times IQR 14046.5(14000 to 14100) and 10453(10400 to 10500) ft 11248 correctly identified Method for Sally - ignore median Method for Ranjit - including outlier ignore median Medians shown Accurate plots by eye \& Sally and Ranjit identified Similar average/median/mean Ranjit less variable/negative skew - must mention outlier
	Total		10	
3	Number members 000 to 649 Select 3 digit random numbers Ignore repeats and >649 Continue until 12 obtained Select corresponding members	$\begin{aligned} & \hline \text { E1 } \\ & \\ & \text { E1 } \end{aligned}$	5	Valid numbering Select 3-digit random numbers Ignore repeats Ignore >649 consistent with their numbering 12 obtained/select corresponding members
	Total		5	

MBS1 (cont)

Box and Whisker plots for question 2(b)

MBS1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\mathrm{P}(3)=0.9212-0.7834=0.138$	M1		$\mathrm{P}(3)=\mathrm{P}(3$ or fewer $)-\mathrm{P}(2$ or fewer $)$ or use of correct formula
		A1	2	0.138 (0.1375 to 0.1385)
(ii)	Poisson mean 2.4	B1		Poisson, mean 2.4
	$\mathrm{P}(0)=0.0907$	B1	2	0.0907 (0.0907 to 0.09075)
(iii)	Poisson mean 12	B1		Poisson mean 12
	$\mathrm{P}(20$ or more $)=1-\mathrm{P}(19$ or fewer $)$	M1		$\mathrm{P}(20$ or more $)=1-\mathrm{P}(19$ or fewer $)$
	$=1-0.9787$			
	$=0.0213$	A1	3	$0.0213(0.021$ to 0.0214$)$ sc allow B2 for 0.0116 (0.011 to 0.0117)
(b)(i)	Poisson mean 1.8 Standard deviation $=\sqrt{1.8}=1.34$			
	Standard deviation $=\sqrt{1.8}=1.34$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \sqrt{ } \text { their mean } \\ & 1.34(1.34 \text { to } 1.345) \end{aligned}$
(ii)	Cannot distinguish between 2-1 and 3-0	E1	1	Reason
(c)	Mean not constant	E1	1	Reason - generous
	Total		11	
5(a)(i)	$\frac{3}{28}=0.107$	M1	1	
(ii)	$\frac{5}{28}=0.179$	M1	1	
(iii)	$\frac{3}{13}=0.231$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	0.107 (0.1065 to 0.1075)
				$0.231(0.23 \text { to } 0.231)$
				$0.179(0.178$ to 0.179$)$ all acf
(b)(i)	$\frac{6}{28} \times \frac{5}{27}=0.0397$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	allow with replacement 0.0397 (0.0396 to 0.04) acf
(ii)	$2 \times \frac{15}{28} \times \frac{13}{27}=0.516$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	allow with replacement 0.516 (0.516 to 0.52) acf
(c)(i)	S,T	B1	1	S, T cao
(ii)	$\mathrm{P}(\mathrm{S}) \mathrm{P}(\mathrm{S}) \neq \mathrm{P}(\mathrm{S} \mid \mathrm{R})(0.179 \neq 0.231)$	M1		Reason
	No or $\mathrm{P}(\mathrm{R}) \cdot \mathrm{P}(\mathrm{S}) \neq \mathrm{P}(\mathrm{R} \cap \mathrm{S})$ $\frac{13}{28} \cdot \frac{5}{28}=0.0829 \neq \frac{3}{28}=0.107$ or $\mathrm{P}(\mathrm{R}) \neq \mathrm{P}(\mathrm{R} \mid \mathrm{S}) \quad\left(\frac{13}{28} \neq \frac{3}{5}\right)$	A1	2	No - needs numerical support
	Total		11	

MBS1 (cont)

MBS1 (cont)

Graph for question 6

MBS1 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$z=\frac{1000-1460}{400}=-1.15$ Probability one carton sufficient $\begin{aligned} & =1-0.87493 \\ & =0.125 \end{aligned}$	M1 M1 A1		ignore sign a correct use of normal tables
(ii)	$z_{1}=\frac{2000-1460}{400}=1.35$ Probability exactly 2 cartons required $0.91149-(1-0.87493)=0.786$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	Completely correct method $0.786(0.786$ to 0.787$)$
(b)(i)	Normal mean 1460 s.d. $\frac{400}{\sqrt{7}}=151.2$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	1460 - may be implied by later use $151.2(151$ to 152$)$ or variance $=22857$, (22800 to 22900), allow $\frac{400}{\sqrt{7}}$ s.d. or variance may be implied by later use
(ii)	$1460+2.3263 \times \frac{400}{\sqrt{7}}=1812$	B1		$2.3263 \text { (2.32 to 2.33) }$
		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	ignore sign and $\sqrt{7}$ 1812 (1805 to 1815)
(iii)	mean $1812 \rightarrow$ total $1812 \times 7=12684$ requires 13 cartons to have probability of 0.99 of meeting demand	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	13 cao sc If \bar{x} interpreted as total for the week Allow: (i) B0, B0 (ii) B1, M1, A1 12684 (12600 to 12700) (iii) $\mathrm{M} 1, \mathrm{~A} 1$
(c)	$\mu+0.5828 \times 300=1000$	B1		0.5828 (0.58 to 0.59)
	$\mu=825$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		their $z \times 300-$ must be a $z-$ value completely correct method - their z and attempt to solve equation
		A1	4	825 (824 to 826)
	Total		16	
	TOTAL		80	

