Version: 1.0 9/9/2005

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBP2 Pure 2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
√or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
– <i>x</i> ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:

mark as in scheme		
zero marks unless specified otherwise		
mark both/all fully and award the mean mark rounded down		
award credit for the complete solution only		
do not mark unless it has not been replaced		
award method and accuracy marks as appropriate		

Mathematics and Statistics B Pure 2 MBP2 June 2005

Q	Solution	Marks	Total	Comments
1(a)(i)	0.5	B1	1	
(ii)	When $r = 0.5$, $-1 < r < 1$ so series is	F.1	1	
(b)	convergent	E1	1	oe
(b)	$S_{\infty} = \frac{a}{1-r}$	M1		
		A1√	2	ft only of value of r such that $ r < 1$
(c)	$24^{\text{th}} \text{ term} = ar^{24-1}$	M1		Condone ar^{24}
(0)	22	IVI I		Condone ur
		A1		oe Accept 9.54×10^{-7} or better
	` '	A 1	3	
	= 2 ⁻²⁰	A1	3	(accept $k = -20$ if clear)
	Total		7	
2(a)(i)	-1, 1 and 4	B2,1,0	2	
(ii)	<i>y</i> ↑			
	4	B1		Cubic Shape: one minimum and one max
				to left of min. (Condone max on or to the
				right of the y-axis)
		B1√	2	Cubic cutting <i>x</i> -axis at three ft values
	-1 1 4 x			from (i) and cutting y-axis at 4.
	'	D1 ^		
(iii)	$ \begin{vmatrix} x > 4 \\ -1 < x < 1 \end{vmatrix} $	B1√ B1√	2	If incorrect, ft on cubic graph with three
	$-1 < \chi < 1$	DI√	2	points of intersection with <i>x</i> -axis. Deduct maximum of 1 mark for use of
				non-strict inequalities
(b)(i)	$f(x)=(x^2-1)(x-4)=x^3-4x^2-x+4$	M1		Attempts to multiply the remaining
			_	'bracket' by product of any two brackets
(::)	2 2 2	A1	2	Accept $p = -4$, $q = -1$
(ii)	$\frac{f(x)}{x} = \frac{x^3 - 4x^2 - x + 4}{x}$			
	$\dots = x^2 - 4x - 1 + \frac{4}{}$	M1A1√		M1 (one term ft correct)
	\boldsymbol{x}			3
	$\int \frac{f(x)}{x} dx = \frac{x^3}{3} - \frac{4x^2}{2} - x + 4 \ln x + c$	A1		$\frac{x^3}{3}$
	$\int x$ 3 2	711		3
		A1		4ln <i>x</i>
		41 ^	E	$\frac{px^2}{2} + qx$
		Al√	3	$\frac{1}{2} + qx$
				(Condone absence of '+c')
(iii)	$\int_{1}^{2} \dots = \left(\frac{8}{3} - 8 - 2 + 4 \ln 2\right) - \left(\frac{1}{3} - 2 - 1\right)$	N # 1		
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (3)	M1		F(2) - F(1)
	$\dots = \frac{7}{3} - 7 + 4 \ln 2 = 4 \ln 2 - \frac{14}{3}$	A1	2	cso ag
	$\ldots = \frac{3}{3} - \frac{4 \ln 2}{3} = \frac{4 \ln 2}{3}$		_	
	Total		15	

MBP2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 2$	M1		Use of $p\left(\frac{1}{2}\right)$
	$= 0 \Rightarrow (2x - 1)$ is a factor of $p(x)$	A1	2	ag Must have the conclusion.
(b)	p(-1) = -2 - 3 + 3 + 2 = 0	B1	1	
(c)	(x+1) is a factor of $p(x)$	B1		Award at any stage
	$p(x) \equiv (x+1) (2x-1) [x \dots -2]$	M1		Valid attempt at 3^{rd} factor/complete method. [coeff of x^3 correct or const
	$p(x) \equiv (x+1) (2x-1) (x-2)$	A1	3	correct or use of p(2)]
(d)	$x \to \ln y \Rightarrow$			
	$(\ln y + 1)(2\ln y - 1)(\ln y - 2) = 0$	M1		Using $x = \ln y$
	$\Rightarrow \ln y = -1; \ \ln y = \frac{1}{2}; \ \ln y = 2$			
	$\Rightarrow y = e^{-1}; \ y = e^{0.5}; \ y = e^{2}.$	m1 A2,1√	4	for $\ln y = k$ to $y = e^k$. ft on end's 3^{rd} factor $(x-a)$ only if $a \neq 0$,
				$a \neq -1$, $a \neq 0.5$ (A1ft for one of the three solutions).
				Condone $\frac{1}{e}$ or \sqrt{e} forms
				NMS Mark as B4,0 provided answer to part (c) is correct.
	Total		10	

MBP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		For $\frac{1}{2}r^2\theta$ oe
	$16 = \frac{1}{2}x^2\theta \Rightarrow \theta = \frac{32}{x^2}$	A1	2	
(b)	${Arc=} r\theta$	M1		Accept seen in any part
	Perimeter $P = 2x + Arc$	M1		
	$P = 2x + x\theta = 2x + \frac{32}{x}$	A1	3	cso ag
(c)(i)	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - 32x^{-2}$	B1 B1	2	B1 for each term
(ii)	$\frac{dP}{dx} = 0 \Rightarrow 2 = 32x^{-2}$	M1		Put $P'(x)=0$ and then to stage $ax^n=k$
	$\Rightarrow x^2 = 16 \Rightarrow x = 4$	A1	2	Condone ± 4
(d)(i)	$\frac{dP}{dx} = 2 - 32x^{-2}$ $\frac{dP}{dx} = 0 \Rightarrow 2 = 32x^{-2}$ $\Rightarrow x^2 = 16 \Rightarrow x = 4$ $\frac{d^2P}{dx^2} = 64x^{-3}$	B1√	1	Only ft on a numerical/sign slip
(ii)	When $x = 4$, $\frac{d^2 P}{dx^2} > 0$	M1		Considers sign of $\frac{d^2P}{dx^2}$ or value of $\frac{d^2P}{dx^2}$
	⇒ Stationary value is a minimum	A 1√	2	at the stationary point ft on c and 's $P''(x)$, no further errors seen
	Total		12	
5(a)(i)	$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$	B1	1	Accept any correct exact form
(ii)	$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$	B1	1	Accept any correct exact form
(b)(i)	$\cos\theta = \pm \frac{\sqrt{3}}{2}; \pm \frac{1}{\sqrt{2}}$	B2,1	2	Any correct <u>exact</u> form (B1 for two of the four correct)
(ii)	$\theta = \frac{\pi}{6}; \frac{\pi}{4}$, from correct positive $\cos \theta$	B1 B1		Deduct maximum of 1 mark for answers in degrees or decimals (3sf or better).
	$\theta = \frac{5\pi}{6}$; $\frac{3\pi}{4}$ from correct negative $\cos \theta$	B1 B1	4	Ignore answers outside the given interval.
	Total		8	

MBP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18 \mathrm{e}^{2x}$	M1		For $k e^{2x}$, $(k \neq 9, -9 \text{ or } 0)$
	$\frac{d}{dx}$ = 18 e	A 1	2	cao
(b)(i)	$\ln x = \ln(0 e^{2x})$	M1		oe Taking ln's of both sides
(6)(1)	$\ln y = \ln(9 e^{2x})$ = $\ln 9 + \ln(e^{2x})$	1411		oc raking in 5 or both sides
	= $\ln 9 + \ln(e^{2x})$	m1		oe Law of logs used correctly
	1 0 1 2			,
	ln y = ln9 + 2x	A 1		
	1 1			
	$x = \frac{1}{2} \ln y - \frac{1}{2} \ln 9$			
	$x = \frac{1}{2} \ln y - \ln 3 \qquad (k=0.5)$	A1	4	cso
(ii)	-	A1 B1√		de la
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2y}$	B1√	1	ft on k : Accept $\frac{dx}{dy} = \frac{k}{y}$
	dy 2y			dy y
(c)	$\frac{dy}{dx} \times \frac{dx}{dy} = 18 e^{2x} \times \frac{1}{2(9 e^{2x})} = 1$	D1	1	Months and
	$dx dy \qquad \qquad 2(9 e^{2x})$	B1	1	ag Must be convinced
	Total		8	
	TOTAL		(0)	
	TOTAL		60	