ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBM3 Mechanics 3

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
$\mathbf{w r}$
$\mathbf{f b}$
deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
mark as in scheme
zero marks unless specified otherwise

More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as
appropriate

Mathematics and Statistics B Mechanics 3 MBM3 June 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)(i)
(ii)
(b) \& $$
\begin{aligned}
& 6^{2}=2^{2}+2 \times a \times 10 \\
& a=\frac{36-4}{20}=1.6 \mathrm{~ms}^{-2} \\
& 6=2+1.6 t \\
& t=\frac{4}{1.6}=2.5 \mathrm{~s} \\
& F-35=65 \times 1.6 \\
& F=104+35=139 \mathrm{~N}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$ \& 2
2
2

3 \& | Use of a constant acceleration equation to find a |
| :--- |
| Correct result from correct working |
| Use of a constant acceleration equation to find t |
| Correct t from correct working |
| Three term equation of motion |
| Correct equation |
| Correct force |

\hline \& Total \& \& 7 \&

\hline 2(a)

(b)

(c) \& \[
$$
\begin{aligned}
& v=\int t-\frac{t^{2}}{5} \mathrm{~d} t \\
&=\frac{t^{2}}{2}-\frac{t^{3}}{15}+c \\
& v=0, t=0 \Rightarrow c=0 \\
& v=\frac{t^{2}}{2}-\frac{t^{3}}{15} \\
& v(5)=\frac{5^{2}}{2}-\frac{5^{3}}{15}=4.17 \mathrm{~ms}^{-1} \\
& s=\int_{0}^{5}\left(\frac{t^{2}}{2}-\frac{t^{3}}{15}\right) \mathrm{d} t \\
&=\left[\frac{t^{3}}{6}-\frac{t^{4}}{60}\right]_{0}^{5} \\
&=10.4 \mathrm{~m}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| m1 |
| A1 | \& 3 \& | Integrating both terms |
| :--- |
| Correct integral with or without c |
| Showing $c=0$ |
| Substituting $t=5$ |
| Correct v |
| Integrating |
| Correct expression |
| Substitution of two limits or finding c and |
| substituting $t=5$ |
| Correct distance |
| sc for only one limit M1A1A1 |

\hline \& Total \& \& 9 \&

\hline 3(a)
(b)
(c)

(d) \& \begin{tabular}{l}
$R+T \sin 40^{\circ}=50 \times 9.8$
$$
\begin{aligned}
R & =490-T \sin 40^{\circ} \\
F & =0.6\left(490-T \sin 40^{\circ}\right) \\
& =294-0.6 T \sin 40^{\circ}
\end{aligned}
$$

$T \cos 40^{\circ}-\left(294-0.6 T \sin 40^{\circ}\right)=50 \times 0.5$
$$
T=\frac{319}{\cos 40^{\circ}+0.6 \sin 40^{\circ}}=277 \mathrm{~N}
$$

 \&

B1

M1

A1

A1

M1

A1

M1

A1

M1

A1

 \& 3 \&

Correct force diagram

Three term equation of motion

Correct equation

Correct expression for R

Use of $F=\mu R$

ag Correct result from correct working

Four term equation of motion

Correct equation

Solving for T

Correct T
\end{tabular}

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MBM3 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\mathrm{KE}=\frac{1}{2} \times 35 \times 2^{2}=70 \mathrm{~J}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	KE calculation using $v=2$ Correct KE
(ii)	$\text { Gain in } \mathrm{KE}=\frac{1}{2} \times 35 \times 6^{2}-70$	M1		KE calculation using $v=6$ Correct expression for gain in KE
	$=560 \mathrm{~J}$	A1	3	Correct gain
(b)	$\begin{aligned} \text { PE lost } & =35 \times 9.8 \times 10 \sin 40^{\circ} \\ & =2200 \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	PE calculation with attempt to find height ag Correct PE; allow 2204
(c)	$2204-560=10 F$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Energy lost $=F x$ including 560 Correct equation
	$F=164 \mathrm{~N}$	A1	3	Correct F Alternative M1: Three term equation of motion A1:Correct equation A1: Correct force
(d)	$\frac{1}{2} \times 35 \times 6^{2}=F s$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		Use of KE lost $=F x$ Correct equation
	$s=\frac{630}{F}=3.83 \mathrm{~m}$	A1 \checkmark	3	Correct length Follow through F Allow 3.84 Alternative M1: Finding acceleration A1: Correct use of a constant acceleration equation A1: Correct length from correct working
	Total		13	
5(a)	$\mathbf{v}=50 \cos (0.1 t) \mathbf{i}-50 \sin (0.1 t) \mathbf{j}$	M1		Differentiating
		A1		Correct i component
		A1	3	Correct \mathbf{j} and \mathbf{k} components
(b)		M1		Finding magnitude of v
	$v=\sqrt{(50 \cos (0.1 t))^{-}+(-50 \sin (0.1 t))^{-}}$	A1		Correct expression
	$=\sqrt{2500\left(\cos ^{2}(0.1 t)+\sin ^{2}(0.1 t)\right)}$	m1		Use of trig identity
	$=\sqrt{2500}=50 \mathrm{~ms}^{-1}$	A1	4	Correct speed
(c)	$\mathbf{a}=-5 \sin (0.1 t) \mathbf{i}-5 \cos (0.1 t) \mathbf{j}$	M1		Differentiating
		A1	2	Correct acceleration
(d)	$a=\sqrt{(-5 \sin (0.1 t))^{2}+(-5 \cos (0.1 t))^{2}}=5$	M1		Finding a
	$F=8000 \times 5=40000 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	Use of $F=m a$ with their acceleration Correct force
	Total		12	

MBM3 (cont)

MBM3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$60 \mathbf{i}+20 \mathbf{j}=20(2 \mathbf{i}-3 \mathbf{j})+200 \mathbf{a}$	M1		Use of constant acceleration equation in vector form to find a
	$20 \mathbf{i}+80 \mathbf{j}=200 \mathbf{a}$	A1		Correct equation
	$\mathbf{a}=0.1 \mathbf{i}+0.4 \mathbf{j}$	A1	3	Correct a
(b)	$\mathbf{v}=(2 \mathbf{i}-3 \mathbf{j})+(0.1 \mathbf{i}+0.4 \mathbf{j}) t$	M1		Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$
	$=(2+0.1 t) \mathbf{i}+(-3+0.4 t) \mathbf{j}$	A1	2	Correct expression
(c)	$2+0.1 t=-(-3+0.4 t)$	M1		Equating components with \pm
	$0.5 t=1$	A1		Correct equation
	$t=2$	A1		Correct t
	$\mathbf{v}=2.2 \mathbf{i}-2.2 \mathbf{j}$	M1		Finding velocity
	$v=\sqrt{2.2^{2}+2.2^{2}}=3.11 \mathrm{~ms}^{-1}$	A1	5	Correct speed
	Total		10	
	TOTAL		80	

