ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBM1 Mechanics 1

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
mark as in scheme
zero marks unless specified otherwise

More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as
appropriate

Mathematics and Statistics B Mechanics 1 MBM1 June 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)
(b) \& $$
\begin{aligned}
& 3 \times 5+2 \times(-5)=5 v \\
& v=\frac{5}{5}=1 \mathrm{~ms}^{-1} \\
& 3 \times 5+2 \times(-5)=2 v+3 \times 0.5 \\
& v=\frac{3.5}{2}=1.75 \mathrm{~ms}^{-1}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$ \& 3

4 \& | Three term conservation of momentum equation |
| :--- |
| Correct equation |
| Correct velocity |
| Four term conservation of momentum equation |
| Correct equation |
| Solving for velocity |
| Correct velocity |

\hline \& Total \& \& 7 \&

\hline 2(a) \& $$
\begin{aligned}
& 0^{2}=7^{2}+2(-9.8) s \\
& s=\frac{49}{19.6}=2.5 \\
& \text { Max Height }=5+2.5=7.5 \mathrm{~m}
\end{aligned}
$$ \& M1

A1

B1 \& 3 \& | Use of constant acceleration equation with $v=0$ |
| :--- |
| Correct s |
| ag Adding 5 to get total height |

\hline (b) \& $$
\begin{aligned}
& 0=7-9.8 t \\
& t=\frac{7}{9.8}=0.714 \mathrm{~s}
\end{aligned}
$$ \& M1

A1 \& 2 \& | Use of constant acceleration equation with $v=0$ |
| :--- |
| ag Correct time from correct working |

\hline \multirow[t]{2}{*}{(c)(i)} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 5.5=4.9 t^{2} \\
& t=\sqrt{\frac{5.5}{4.9}}=1.059 \\
& \text { Total Time }=0.7143+1.059=1.77 \mathrm{~s}
\end{aligned}
$$} \& M1 \& \& Finding time to fall 5.5 metres

\hline \& \& \[
$$
\begin{aligned}
& \text { A1 } \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 4 \& | Correct time |
| :--- |
| Finding total time Correct time |

\hline (c)(ii) \& $v^{2}=0^{2}+2 \times 9.8 \times 5.5$

$v=\sqrt{107.8}=10.4 \mathrm{~ms}^{-1}$ \& | M1 |
| :--- |
| A1 |
| A1 | \& 3 \& | Use of constant acceleration based on catch at the correct height |
| :--- |
| Correct equation |
| Correct speed |

\hline \& Total \& \& 12 \&

\hline \multirow[t]{2}{*}{3(a)} \& $T-800 \times 9.8=800 \times 0.2$ \& M1 \& \& Three term equation of motion

\hline \& $$
T=7840+160=8000 \mathrm{~N}
$$ \& A1

A1 \& 3 \& Correct equation ag Correct tension

\hline \multirow[t]{2}{*}{(b)} \& T-800×9.8 $=800 \times(-0.2)$ \& M1 \& \& Three term equation of motion

\hline \& $T=7840-160=7680 \mathrm{~N}$ \& A1 \& 2 \& Correct tension

\hline \multirow[t]{2}{*}{(c)} \& $T=800 \times 9.8=7840 \mathrm{~N}$ \& B1 \& 1 \& Correct tension

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MBM1 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$R=20 \times 9.8=196 \mathrm{~N}$	M1		Finding R and using $F=\mu R$
	$F=0.15 \times 196=29.4 \mathrm{~N}$	A1	2	Correct friction
(b)	$T-29.4=20 a$	M1		Equation of motion for A
		A1		Correct equation
	$5 \times 9.8-T=5 a$	M1		Equation of motion for B
		A1		Correct equation
	$49-(20 a+29.4)=5 a$ 19.6			
	$a=\frac{19.6}{25}=0.784 \mathrm{~ms}^{-2}$	A1	5	ag Correct acceleration from correct working
(c)	$T=20 \times 0.784+29.4=45.1 \mathrm{~N}$	M1		Substituting a into one equation of motion
		A1	2	Correct tension
(d)	$s=\frac{1}{2} \times 0.784 \times 3^{2}$	M1		Use of constant acceleration equation with $u=0$
	$=3.53 \mathrm{~m}$	A1		Correct equation
		A1	3	Correct distance
	Total		12	
5(a)	$\text { Area }=16+4=20 \mathrm{~cm}^{2}$	B1		Correct area of lamina
	$\bar{x}=\frac{16 \times 2+4 \times 6}{n}$	M1		Three term moment equation
	20	A1		Correct equation
	$=2.8 \mathrm{~cm}$	A1	4	ag Correct distance from correct working
(b)	$\bar{y}=\frac{16 \times 2+4 \times 3.5}{20}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Three term moment equation Correct equation
	$=2.3 \mathrm{~cm}$	A1	3	Correct distance
(c)	$\tan \alpha=\frac{2.3}{2.8}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Use of tan Correct equation
	$\alpha=39.4{ }^{\circ}$	A1	3	Correct angle
	Total		10	
6(a)		B1	1	Correct force diagram
(b)	$\begin{aligned} & R+T \sin 30^{\circ}=200 \times 9.8 \\ & R+0.5 T=1960 \end{aligned}$	M1		Three term equation from resolving vertically
	$R=1960-0.5 T$	A1		Correct equation
	$R=1960-0.5 T$	A1	3	ag Correct result from correct working
(c)	$F=T \cos 30^{\circ}$	M1		Resolving horizontally
	$T \cos 30^{\circ}=0.6(1960-0.5 T)$	M1		Use of $F=\mu R$
	$T\left(\cos 30^{\circ}+0.3\right)=1176$	A1		Correct equation
	$T=1176$	ml		Solving for T
	$T=\frac{}{\left(\cos 30^{\circ}+0.3\right)}=1010 \mathrm{~N}$	A1	5	Correct T
	Total		9	

MBM1 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$8=10 \cos 60^{\circ} t$	M1		Horizontal equation based on travelling 8 metres
	8	A1		Correct equation
	$t=\frac{10 \cos 60^{\circ}}{}=1.6 \mathrm{~s}$	A1	3	ag Correct time from correct working
(b)	$h=10 \sin 60^{\circ} \times 1.6-4.9 \times 1.6^{2}$	M1		Expression for height using $t=1.6$
		A1		Correct expression
	$=1.31 \mathrm{~m}$	A1	3	Correct height
(c)	$v_{x}=10 \cos 60^{\circ}=5$	B1		Horizontal component of the velocity
	$v_{y}=10 \sin 60^{\circ}-9.8 \times 1.6=-7.020$	M1		Expression for vertical component of velocity
		A1		Correct vertical component
	$v=\sqrt{5^{2}+7.020^{2}}=8.62 \mathrm{~ms}^{-1}$	M1		Finding the magnitude
		A1	5	Correct magnitude
	Total		11	
8(a)	$5 \mathbf{i}-2 \mathbf{j}=4 \mathbf{i}+3 \mathbf{j}+10 \mathbf{a}$	M1		Use of constant acceleration equation for velocity
	$\mathbf{a}=\frac{1}{10}(\mathbf{i}-5 \mathbf{j})=(0.1 \mathbf{i}-0.5 \mathbf{j}) \mathrm{ms}^{-2}$	A1		Correct equation
	$\mathbf{a}=\frac{1}{10}(\mathbf{i}-5 \mathbf{j})=(0.1 \mathbf{i}-0.5 \mathbf{j}) \mathrm{ms}$	A1	3	ag Correct acceleration from correct working
(b)	$\mathbf{r}=(4 \mathbf{i}+3 \mathbf{j}) t+0.5(0.1 \mathbf{i}-0.5 \mathbf{j}) t^{2}$	M1		Use of constant acceleration equation for position
		A1	2	Correct expression
(c)	$\mathbf{r}=\left(4 t+0.05 t^{2}\right) \mathbf{i}+\left(3 t-0.25 t^{2}\right) \mathbf{j}$	M1		j component is zero
	$3 t-0.25 t^{2}=0$	A1		Correct equation
	$t(3-0.25 t)=0$	m1		Solving for t
	$t=0 \text { or } t=\frac{3}{0.25}=12 \mathrm{~s}$			
	$t=12 \mathrm{~s}$	A1	4	Correct time
(d)	$\mathbf{v}=(4+0.1 t) \mathbf{i}+(3-0.5 t) \mathbf{j}$	M1		Expression for velocity
	$3-0.5 t=0$	A1		Correct velocity
		m1		\mathbf{j} component is zero
	$t=6$	A1	4	Correct time
	Total		13	
	TOTAL		80	

