GCE 2005 January Series

Mark Scheme

Mathematics and Statistics B

(MBS4)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M ma	rk is formethod
m ma	rk is dependent on one or more M marks and is for method
A ma	rk is dependent on M or m marks and is foraccuracy
B ma	rk is independent of M or m marks and is for method and accuracy
E ma	rk is for explanation
\checkmark or ft or F	follow through from previous
	incorrect result
CAO	correct answer only
AWFW	anything which falls within
AWRT	anything which rounds to
AG	answer given
SC	
OE	or equivalent
A2,1	
- <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
SF	significant figure(s)
DP	decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted <i>x</i> marks for mis-copy
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	
WR	
FB	

Application of Mark Scheme

No method shown:

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Number and Part x = 344.75 s = 1.8323 B1 B1 344.75 ($344.7 \sim 345$) 1.8323 ($1.83 \sim 1.835$) 90% confidence interval 344.75 ± $1.895 \times \frac{1.8323}{\sqrt{8}}$ B1 B1 7df 1.895 (allow 1.89 or 1.9) their Use of their $\frac{sd}{\sqrt{8}}$ 344.75 ± 1.23 (343.52 , 345.98) m1 A1 Completely correct method 343.52 ($343.5 \sim 343.55$) and 346.0 ($345.9 \sim 346$) allow 34 or 344.75 ($344.7 \sim 344.8$) ± 1. ~ 1.23) Allow 345 ± 1 B1 allow 345 ± 1 Allow 345 ± 1 2(a) (b) Won Lost M1 Method for table	14 and 346
1 $\overline{x} = 344.75$ $s = 1.8323$ B1 344.75 $344.7 \sim 345$) 90% confidence interval B1 1.8323 1.8323 1.8323 $344.75 \pm 1.895 \times \frac{1.8323}{\sqrt{8}}$ B1 $7df$ 1.895 (allow 1.89 or 1.9) their 344.75 ± 1.23 M1 Use of their $\frac{sd}{\sqrt{8}}$ Completely correct method $(343.52, 345.98)$ A1 $344.75 (344.7 \sim 344.8) \pm 1.$ ~ 1.23) B1 8 $4,5$ or $6sf$ given in final answer 2(a) Total 8	14 and 346
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 and 346
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 and 346
$344.75 \pm 1.895 \times \frac{110020}{\sqrt{8}}$ B1 \checkmark 1.895 (allow 1.89 or 1.9) their 344.75 ± 1.23 M1 Use of their $\frac{sd}{\sqrt{8}}$ $(343.52, 345.98)$ A1 Completely correct method $344.75 (344.7 \sim 344.8) \pm 1.$ ~ 1.23 $A1$ $a46.0 (345.9 \sim 346)$ allow 34 $a74.75 (344.7 \sim 344.8) \pm 1.$ ~ 1.23 $A1$ $a8$ $2(a)$ $a6$	14 and 346
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 and 346
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$a = 10^{-1}$	
B1 8 ~1.23) Allow 345 ± 1 4,5 or 6sf given in final answe Total 8	
B1 Allow 345 ± 1 B1 8 4,5 or 6sf given in final answer 2(a)	.23 (1.225
B1 8 4,5 or 6sf given in final answer Total 8 2(a)	
2(a)	er
(D) Won Lost WII Method for table	
$\boxed{\langle 2 \text{ hours } 28 \ 22.63 \ 15 \ 20.37 \ 43} \text{A1} \qquad \text{Labeled correctly, allow }>2$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
H_0 No association between length of match and chance of Boris winning H_1 Association between length of matchB1Null hypothesis - may be implicit clearly stated conclusion-gene 1-sided etc	
and chance of Boris winning M1 Attempt at $\Sigma(O-E)^2/E$	
$\sum \frac{(O-E -0.5)^2}{-4.04}$ m1 Attempt at Yates' correction	
	Correction
c.v. χ_1^2 is 3.841 A1 B1 \checkmark 4.04 (4 ~ 4.10) 1 df	
$B1\sqrt{1185.841}$ B1 $\sqrt{1185.841}$ B1}{\sqrt{1185.841}} B1 $\sqrt{1185.841}$ B1}{\sqrt{1185.841}} B1 $\sqrt{1185.841}$ B1}{\sqrt{1185.841}} B1}{\sqrt{1185.841}	
Reject H_0 , evidence of association	
between result and length of game. Al \checkmark 9 ft their figures - needs all M M must be compared with upper (maximum 8 out of 9 if metho constructing table is incorrect) clearly stated correct conclusion hypothesis	tail of χ^2 od of) – Needs
 (c) There is evidence of association between result and length of game but contrary to Boris's belief he appears to be less likely to win longer games. (c) E1 E1	e of
Total 14	ipilea for

Mathematics and Statistics B Statistics 4 MBS4 January 2005

Question	Solution	Marks	Total	Comments
Number				
and Part				
3(a)	<i>c</i> /2	B1	1	<i>c</i> /2 cao
(b)	$2c 1 \qquad \begin{bmatrix} 1 & u^3 \end{bmatrix}^{2c}$	M1		Any correct expression - ignore limits
	$E(X^{2}) = \int_{0}^{2c} \frac{1}{x^{2}} dx = \left \frac{1}{x^{2}} \frac{x}{x^{2}} \right $	M1		Any correct integration
		m1		Correct method apart from
				numerical/algebraic slips
	$E(X^{2}) = \int_{-c}^{2c} \frac{1}{3c} x^{2} dx = \left[\frac{1}{3c} \frac{x^{3}}{3}\right]_{-c}^{2c}$ $= \frac{1}{9c} \left[8c^{3}c^{3}\right] = c^{2}$	A1	4	Completely correct method ag
(c)	Variance = $c^2 - (c/2)^2 = 3c^2/4$	M1		Correct method their answer to (a) - allow variance if called variance
	standard deviation = $c\sqrt{3}/4 = 0.866c$	m1		Allow any correct method - allow variance if called variance
		A1	3	$c\sqrt{3/4}$ acf or 0.866 <i>c</i> (0.866 <i>c</i> ~ 0.867 <i>c</i>)
		AI	5	CV3/4 act of 0.800 <i>c</i> (0.800 <i>c</i> ~ 0.807 <i>c</i>)
(d)(i)	22 is estimate of $c/2$.	M1		Method for c - their answer to (a)
	Estimated value of <i>c</i> is 44	A1		44 cao - may be implied later
	Estimated value of c is 44 Estimated standard deviation of X is	ml		Method for s.d. their answer to (c)
	$44 \times \sqrt{3/4} = 38.1$	A1	4	$38.1 (38 \sim 38.2)$ allow $22\sqrt{3}$
	J0.1		•	56.1 (56 ° 56.2) allow 22 v5
(ii)	Minimum weight is $2000 - c$ grams	M1		Method their <i>c</i>
	estimated by 1956 grams.	A1	2	1956grams or 1.956 kg - allow1960 or
				1.96 units required
	Total		14	
4(a)	$H_0 \mu = 18$	B1		One correct hypothesis - generous
	$H_1 \mu \neq 18$	B1		Both correct - ungenerous
	x = 32.11 s = 18.71	B1		32.1 (32.05 ~ 32.15)
	<i>x 52.</i> 5 10.71	B1		18.7 (18.65 ~ 18.75)
	32 11-18	M1		Use of their s.d./ $\sqrt{11}$
	$t = \frac{32.11 - 18}{18.71} = 2.50$	m1		Correct method for <i>t</i> ignore sign
	$\frac{10.71}{\sqrt{11}}$	A1		2.50 (2.495 ~ 2.505)
	$\sqrt{11}$	D1		104f
	critical values t_{10} are ± 2.228	B1		10df +2.228 their df isrors size allow 2.22
		B1√	10	± 2.228 their df, ignore sign, allow 2.23
	reject H_0 significant evidence mean not	A1√	10	Reject H_0 , must be compared with correct tail of <i>t</i> .
	equal to (greater than) 18			
(b)(i)	$H_0 \mu = 18$ - no change	B1		No change
(ii)	$H_1 \mu < 18$	B1		$\mu < 18$ - generous
(iii)	-1.812	B1		-1.812 cao
(iv)	Accept H_0 mean equals 18	B1	4	Correct conclusion based on correct
	perro mean equilibrio			answers to (i),(ii) and (iii)
(c)(i)	$H_0 \mu = 18$ - no change	B1		no change – allow $\mu <$
(ii)	$H_1 \mu > 18$	B1		$\mu > 18$ generous
(iii)	1.812	B1		1.812 cao
(iv)	Reject H_0 significant evidence mean	B1	4	Correct conclusion based on correct
()				answers to (i) (ii) and (iii)

Total

18

MBS4 (cont)

greater than 18

answers to (i),(ii) and (iii)

<u>IBS4 (cont)</u> Question	Solution	Marks	Total	Comments
Number				
and Part				
5(a)	$\overline{x} = 4256/400 = 10.64$	B1		10.64 allow 10.6
	95% confidence interval for mean	D1		1.96
	$10.64 \pm 1.96 \times \frac{3.68}{\sqrt{400}}$	B1		
		M1		Use of $\frac{3.68}{\sqrt{400}}$, allow use of $3.68\sqrt{\frac{400}{399}}$
	10.64 ± 0.361	m1		Correct method for interval, their mean- allow incorrect <i>z</i> -value
	(10.28, 11.00)	A1	5	10.28 (10.275 ~ 10.3) and
				11.00 (10.995 ~ 11.005)
				or 10.64cao $\pm 0.361 (0.36 \sim 0.361)$
(b)(i)	E(<i>X</i>)=5×0.15+10×0.63+15×0.15+20×0.07	M1		Method for $E(X)$
(;;)	$= \pounds 10.7$ E(X^2)=25×0.15×100×0.63+225×0.15+	A1 M1		10.7 cao – ignore units Mathad for $E(Y^2)$ may be implied
(ii)	$E(X) = 25 \times 0.15 \times 100 \times 0.63 + 225 \times 0.15 + 400 \times 0.07 = 128.5$	M1		Method for $E(X^2)$ may be implied
		M1		Method for s.d., their answers to (i) and
(;;;)	s.d. of $X = \sqrt{128.5 - 10.7^2} = \text{\pounds}3.74$			(ii) -allow variance if called variance
(iii)	s.d. of $X = \sqrt{128.5 - 10.7} = \pm 3.74$	m1		Completely correct method for s.d Allow variance if called variance
		A1	6	$3.74 (3.74 \sim 3.745)$
(c)	mean within confidence interval	E1√		ft Mean within confidence interval –
	calculated in (a), standard deviation close			allow similar
	to observed standard deviation. Model	E1√	2	ft s.d. similar to observed
	appears plausible.	E1√	3	Correct conclusion based on correct calculations
(d)(i)	$\overline{x} = 2342/200 = 11.71$	B1		11.71 or 11.7
	$H_0 \mu = 11.00$	B1		One correct hypothesis - generous
	$H_1 \mu > 11.00$	B1		Both correct - ungenerous $\frac{3}{200}$
	$z = \frac{11.71 - 11.00}{3.42} = 2.94$	M1		Use of $\frac{3.42}{\sqrt{200}}$, allow use of $3.42\sqrt{\frac{200}{199}}$
	$\overline{\sqrt{200}}$	m1		Correct method for <i>z</i> , ignore sign
	critical value 1.6449	A1 P1		$2.94 (2.93 \sim 2.94)$ 16440 as 1645 as 164 as 165
		B1		1.6449 oe 1.645 or 1.64 or 1.65 allow <i>t</i> = 1.652 on 1.653
	Reject H ₀ significant evidence mean	A1√	8	Correct conclusion, their figures, must be
	exceeds	~ ¥ I V	0	compared with appropriate tail of z .
(ii)				needs previous M1
(11)	Since £11 was upper limit of confidence interval for mean, there is strong evidence			Politica estador de la
	that the mean has increased	E1	2	Evidence sales have increased Since £11 upper limit of confidence
	net net mean has mereaded	E1	2	interval
(iii)	Have total sales of petrol increased? How			
	much does the scheme cost? Have other	E1		Any sensible point
	sales increased? Etc	E1	2	A second sensible point
	Total		26	
	TOTAL		80	