GCE 2005 January Series



# Mark Scheme

# Mathematics and Statistics B

(MBP3)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

## Key to Mark Scheme

| <b>M</b> ma             | rk is formethod                                                  |
|-------------------------|------------------------------------------------------------------|
| <b>m</b> ma             | rk is dependent on one or more M marks and is for method         |
| <b>A</b> ma             | rk is dependent on M or m marks and is foraccuracy               |
| <b>B</b> ma             | rk is independent of M or m marks and is for method and accuracy |
| <b>E</b> ma             | rk is for explanation                                            |
| $\checkmark$ or ft or F | follow through from previous                                     |
|                         | incorrect result                                                 |
| CAO                     | correct answer only                                              |
| AWFW                    | anything which falls within                                      |
| AWRT                    | anything which rounds to                                         |
| AG                      | answer given                                                     |
| SC                      |                                                                  |
| OE                      | or equivalent                                                    |
| A2,1                    |                                                                  |
| - <i>x</i> EE           | deduct <i>x</i> marks for each error                             |
| NMS                     | no method shown                                                  |
| PI                      | possibly implied                                                 |
| SCA                     | substantially correct approach                                   |
| c                       | candidate                                                        |
| SF                      | significant figure(s)                                            |
| DP                      | decimal place(s)                                                 |

## **Abbreviations used in Marking**

| MC – <i>x</i> | deducted <i>x</i> marks for mis-copy |
|---------------|--------------------------------------|
| MR – <i>x</i> |                                      |
| ISW           | ignored subsequent working           |
| BOD           |                                      |
| WR            | work replaced by candidate           |
| FB            |                                      |

# **Application of Mark Scheme**

### No method shown:

| Correct answer without working   | mark as in scheme                     |
|----------------------------------|---------------------------------------|
| Incorrect answer without working | zero marks unless specified otherwise |

| More than one method/choice of solution:<br>2 or more complete attempts, neither/none<br>crossed out<br>1 complete and 1 partial attempt, neither crossed out | mark both/all fully and award the mean mark<br>rounded down<br>award credit for the complete solution only |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Crossed out work                                                                                                                                              | do not mark unless it has not been replaced                                                                |
| Alternative solution using a correct or partially correct method                                                                                              | award method and accuracy marks as appropriate                                                             |

| Question<br>Number | Solution                                                                                                                       | Marks                 | Total | Comments                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|---------------------------------------------------------|
| and Part           |                                                                                                                                |                       |       |                                                         |
|                    | $z = 3\sqrt{2} \left(\cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4}\right) = -3 + 3i$                                               | M1 A1                 | 2     | Give M1 if either <i>a</i> , <i>b</i> correct           |
| (b)(i)             | $w^2 = 1 - 3 - 2 i \sqrt{3}$                                                                                                   | M1                    |       |                                                         |
|                    | so that $w^2 + 2w = -4 \in \mathbb{R}$                                                                                         | A1                    | 2     |                                                         |
| (ii)               | $\frac{4}{w} = \frac{4}{-1 + i\sqrt{3}} \times \frac{-1 - i\sqrt{3}}{-1 - i\sqrt{3}}$                                          | M1                    |       |                                                         |
|                    | $=$ $-1 - i\sqrt{3}$                                                                                                           | A1                    |       |                                                         |
|                    | $w - \frac{4}{w} = 2i\sqrt{3}$                                                                                                 | A1                    | 3     | сао                                                     |
|                    | Total                                                                                                                          | 2.41                  | 7     |                                                         |
| 2                  | Multiplying by $(3-x)^2$<br>$(3-x){3x+1-2(3-x)} > 0$<br>5(x-1)(x-3) < 0<br>1 < x < 3                                           | M1<br>m1<br>B1√<br>A1 | 4     | Collecting up on one side $x = 1$ , 3 identified ft cao |
|                    | $\frac{\text{ALTERNATIVE 1:}}{\text{For } x < 3, \ 3x + 1 > 2(3 - x)}$<br>$\implies x > 1$<br>For $x > 3, \ 3x + 1 < 2(3 - x)$ | M1<br>A1<br>M1        |       | $\geq$ 1 case correctly considered                      |
|                    | $\Rightarrow x < 1 \Rightarrow \text{ no solns.}$                                                                              | Al                    | (4)   | Must have a definite conclusion                         |
|                    | ALTERNATIVE 2:<br>Relevant graph drawn<br>Identifying correct intersections<br>Correct range deduced                           | M1 A1<br>B1√<br>A1    | (4)   | Ignore irrelevant <i>y</i> -values<br>ft if appropriate |
| 2()(')             | Total                                                                                                                          |                       | 4     |                                                         |
| 3(a)(i)            | $\mathbf{M}^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$                   | M1                    |       | Must be evidence of correct matrix multn. method        |
|                    | $= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$                                                                             | A1                    |       | сао                                                     |
| (ii)               | $\mathbf{M}^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$                                                                  | B1√                   | 3     | ft                                                      |
| (b)                | Rotation (anticlockwise) through $\frac{1}{2}\pi$ about 0                                                                      | M1<br>A1              | 2     | "acw" may be implicit                                   |
| (c)                |                                                                                                                                | M1                    |       | Any suitable method made clear                          |
|                    | $\mathbf{N} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$                                                                   | A1                    | 2     | Any suitable method made creat                          |
|                    | Total                                                                                                                          |                       | 7     |                                                         |

### Mathematics and Statistics B Pure 3 MBP3 January 2005

| Question           | Solution                                                                                        | Marks          | Total | Comments                                  |
|--------------------|-------------------------------------------------------------------------------------------------|----------------|-------|-------------------------------------------|
| Number<br>and Part |                                                                                                 |                |       |                                           |
| 4(a)(i)            |                                                                                                 | B1 B1          | 2     |                                           |
|                    | $\alpha + \beta = 2$ , $\alpha \beta = \frac{1}{2}$                                             |                |       |                                           |
|                    |                                                                                                 |                |       |                                           |
|                    |                                                                                                 | N/1            |       |                                           |
| (11)               | $(\alpha + \beta)^2 - 2\alpha\beta = 3$                                                         | M1<br>A1√      | 2     | ft (i)'s answers                          |
|                    |                                                                                                 | 111 1          | -     |                                           |
| (iii)              | $\alpha^2 + \beta^2 + 6(\alpha + \beta) + 18 = 33$                                              | M1             | 2     |                                           |
|                    |                                                                                                 | A1√            | 2     | ft (i) and (ii)'s answers                 |
| (b)                |                                                                                                 | B1             |       |                                           |
|                    | New product of roots $= 1$                                                                      |                |       |                                           |
|                    | New sum of roots = $\frac{(\alpha + 3)^2 + (\beta + 3)^2}{\alpha\beta + 3(\alpha + \beta) + 9}$ | M1             |       | Form ready for substn.                    |
|                    |                                                                                                 | 1411           |       | Form ready for substit.                   |
|                    | $=\frac{66}{31}$                                                                                | A1√            |       | ft                                        |
|                    | New eqn. is $31y^2 - 66y + 31 = 0$                                                              | A1             | 4     | ft. Must have integer coefficients and be |
|                    |                                                                                                 | 1110           | •     | an equation (coefft. $y^2 \neq 1$ )       |
|                    | Total                                                                                           |                | 10    |                                           |
| 5(a)               | $\ln y = \ln a + x \ln b$                                                                       | B1             | 1     |                                           |
| (b)(i)             | ln y 1.128 1.261 1.394 1.528 1.660                                                              | B1             |       | 3 roots (to $\geq$ 3 s.f.)                |
|                    |                                                                                                 | B1             |       | All roots to 3 d.p. (condone 1.66)        |
|                    | Points plotted on graph provided                                                                | B1             | 3     | Reasonably accurately                     |
| (ii)               | "Good" straight line drawn                                                                      | B1             | 1     |                                           |
| (11)               |                                                                                                 |                | 1     |                                           |
| (c)(i)             | From graph $x = 3.4 \implies \ln y = 1.44/5$                                                    | M1             |       | Including un-logging attempt              |
|                    | $\Rightarrow$ y = 4.24 to 4.26                                                                  | A1             | 2     | awrt                                      |
| (ii)               | Method for finding gradient:                                                                    |                |       | Sim. Eqns. Approach OK also               |
|                    | $\ln b \approx \frac{0.67}{0.5} \approx 1.32-4$                                                 | M1             |       | For either/both M's                       |
|                    |                                                                                                 | 1              |       |                                           |
|                    |                                                                                                 |                |       |                                           |
|                    | <i>b</i> = 3.7-3.9                                                                              | A1             |       | awrt                                      |
|                    |                                                                                                 | A1<br>M1<br>A1 | 4     | awrt<br>awrt                              |

| Question           | Solution                                    | Marks                      | Total | Comments                                                                                                                          |
|--------------------|---------------------------------------------|----------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| Number<br>and Part |                                             |                            |       |                                                                                                                                   |
| 6(a)               |                                             | M1<br>A1                   | 2     | All above <i>x</i> -axis<br>Good graph, with cusps. Ignore vertical<br>scale.                                                     |
| (b)                | x = 0, $x = 1$ , $x = 4$ , $y = 00 1 4$     | B1<br>B1<br>B1<br>B1<br>B1 | 5     | Any 2 asymptotes stated<br>All 4<br>Region $0 < x < 1$ correct<br>Region $1 < x < 4$ correct<br>Regions $x < 0$ , $x > 4$ correct |
|                    | Total                                       |                            | 7     |                                                                                                                                   |
| 7(a)               | a = 11, b = 9, c = 3, d = 1                 | B1 B1                      | 2     | 2 roots ; all 4 roots                                                                                                             |
| (b)                | <i>k</i> = 9                                | B1                         | 1     |                                                                                                                                   |
| (c)                | $3^{-1} = 5$                                | B1                         | 1     |                                                                                                                                   |
| (d)                | x = 11                                      | B1                         | 1     |                                                                                                                                   |
| (e)                | $k^2 = 81 \equiv 11 \pmod{14} \equiv k + 2$ | M1 A1                      | 2     | ft M only for $k^2 \pmod{14}$ correct                                                                                             |
|                    | Total                                       |                            | 7     |                                                                                                                                   |

## MBP3 (cont)

| Question | Solution                                                                                                                                                               | Marks          | Total | Comments                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|----------------------------------------------------------------------------------|
| Number   |                                                                                                                                                                        |                |       |                                                                                  |
| and Part |                                                                                                                                                                        |                |       |                                                                                  |
| 8(a)(i)  | Translation (// x-axis), vector $\begin{bmatrix} 2\\ 0 \end{bmatrix}$                                                                                                  | M1 A1          | 2     | B1 for equivalent correct description without "translation"                      |
| (ii)     | $(r \cos \theta - 2)^{2} + (r \sin \theta)^{2} = 4$<br>$r^{2}(\cos^{2}\theta + \sin^{2}\theta) - 4r \cos \theta + 4 = 4$<br>Use of c <sup>2</sup> + s <sup>2</sup> = 1 | M1<br>A1       |       | Backwards approach is fine                                                       |
|          | $(r \neq 0) \Rightarrow r = 4 \cos \theta$                                                                                                                             | B1<br>A1       | 4     | ag                                                                               |
| (b)(i)   | $r_{\rm max} = 8$ , $r_{\rm min} = 0$                                                                                                                                  | B1 B1          | 2     |                                                                                  |
| (ii)     |                                                                                                                                                                        | B1<br>B1<br>B1 | 3     | Symmetry in $\theta = \frac{1}{2}\pi$<br>Symmetry in $\theta = 0$<br>All correct |
| (c)      | Equating $8\cos^2\theta = 4\cos\theta$ and solving                                                                                                                     | M1             |       |                                                                                  |
|          | $\theta = \frac{1}{3}\pi$ and $r = 2$                                                                                                                                  | A1 A1          |       |                                                                                  |
|          | $2^{nd}$ point $\theta = -\frac{1}{3}\pi$ , $r = 2$                                                                                                                    | A1√            | 4     | Or ft $2\pi - (1^{st} \theta)$ , same <i>r</i>                                   |
|          | Total                                                                                                                                                                  |                | 15    |                                                                                  |

| Question | Solution                                                                                      | Marks | Total | Comments                                              |
|----------|-----------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------|
| Number   |                                                                                               |       |       |                                                       |
| and Part |                                                                                               |       |       |                                                       |
| 9(a)     | For $n = 1$ , LHS = RHS = 96                                                                  | B1    |       | True case $n = 1$                                     |
|          | Clear induction hypothesis somewhere                                                          | E1    |       |                                                       |
|          | Correct $(k + 1)^{\text{th}}$ term used                                                       | B1    |       | 4(k+2)(k+3)(k+4)                                      |
|          | Some $(k + 1)^{th}$ term added both sides                                                     | M1    |       |                                                       |
|          |                                                                                               | m1    |       | Factorising attempt                                   |
|          | $(k + 2)(k + 3)(k + 4){k + 1 + 4} - 24$                                                       |       |       |                                                       |
|          | = [(k+1)+1][(k+1)+2][(k+1)+3]                                                                 |       |       |                                                       |
|          | $\dots[(k+1)+4]-24$                                                                           |       |       |                                                       |
|          | Or explaining that formula true for                                                           |       |       |                                                       |
|          | $n = k \implies$ true also for $n = k + 1$                                                    | A1    | 6     | Convincingly                                          |
| (b)(i)   | r+3-(r+1) 2                                                                                   |       |       |                                                       |
|          | $\frac{r+3-(r+1)}{(r+1)(r+2)(r+3)} \equiv \frac{2}{(r+1)(r+2)(r+3)}$                          | B1    | 1     | Shown                                                 |
|          | 2                                                                                             |       |       |                                                       |
|          | $\sum \frac{2}{(r+1)(r+2)(r+3)} =$                                                            |       |       |                                                       |
|          |                                                                                               |       |       | Attempt at difference of two series                   |
|          | $\sum \frac{1}{(r+1)(r+2)} - \sum \frac{1}{(r+1)(r+2)}$                                       | M1    |       |                                                       |
|          | $= \left\{ \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{(n+1)(n+2)} \right\} -$           |       |       |                                                       |
|          | $-\left\{\frac{2.3}{2.3} + \frac{3.4}{3.4} + \dots + \frac{(n+1)(n+2)}{(n+1)(n+2)}\right\} =$ |       |       |                                                       |
|          |                                                                                               | A1    |       | Correct series identified                             |
|          | $\left  \int 1 \right  = 1 = 1$                                                               |       |       |                                                       |
|          | $\left\{\frac{1}{3.4} + \dots + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)}\right\}$          |       |       |                                                       |
|          | 1 1                                                                                           | m1    |       | All terms except 1 <sup>st</sup> and last cancelling; |
|          | $=\frac{1}{2.3}-\frac{1}{(n+2)(n+3)}$                                                         |       |       |                                                       |
|          |                                                                                               |       |       | $A = \frac{1}{6}$                                     |
|          |                                                                                               | A1    | 4     |                                                       |
|          |                                                                                               |       |       | Give B1 if A deduced correctly                        |
| (iii)    | ~ 1                                                                                           |       |       |                                                       |
|          | $S = \frac{1}{6}$                                                                             | B1√   | 1     | ft their A                                            |
|          | Total                                                                                         |       | 12    |                                                       |
|          | TOTAL                                                                                         |       | 80    |                                                       |

#### MBP3 (cont)