GCE 2004 November Series

Mark Scheme

Mathematics and Statistics B MBM1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
PI		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$	deducted x marks for mis-copy
MR $-\boldsymbol{x}$	deducted x marks for mis-read
isw	ignored subsequent working
bod	gave benefit of doubt
wr	work replaced by candidate
$\mathbf{f b}$	formulae book

Application of Mark Scheme

Correct answer without working
 Incorrect answer without working

mark as in scheme
 zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Mathematics and Statistics B Mechanics 1 MBM1 November 2004

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a)(i) \\
(ii) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 16^{2}=0^{2}+2 \times a \times 400 \\
\& a=\frac{256}{800}=0.32 \mathrm{~m} \mathrm{~s}^{-2} \\
\& 16=0+0.32 t \\
\& t=\frac{16}{0.32}=50 \text { seconds } \\
\& 30^{2}=16^{2}+2 \times 0.5 \mathrm{~s} \\
\& s=30^{2}-16^{2}=644 \mathrm{~m} \\
\& 644=\frac{1}{2}(16+30) t \\
\& t=\frac{644}{23}=28 \mathrm{~s}
\end{aligned}
\] \\
Total time \(=28+50=78 \mathrm{~s}\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
\] \& \[
2
\]
\[
2
\] \& \begin{tabular}{l}
Using constant acceleration equation to find \(a\) \\
ag Correct \(a\) from correct working \\
Using constant acceleration equation to find \(t\) \\
Correct \(t\) \\
Using constant acceleration equation to find \(s\) \\
Correct \(s\) \\
Using constant acceleration equation to find \(t\) \\
Correct \(t\) \\
Adding 50 to give total time
\end{tabular} \\
\hline \& Total \& \& 9 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \&
\[
\begin{aligned}
\& R=4 \times 9.8=39.2 \mathrm{~N} \\
\& T-0.4 \times 39.2=4 \times 2 \\
\& T=23.7 \mathrm{~N}(\text { to } 3 \mathrm{sf}) \\
\& 20-0.4 \times 39.2=4 a \\
\& a=1.08 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
1 \\
3
\end{tabular} \& \begin{tabular}{l}
Correct diagram \\
Correct normal reaction \\
Three term equation of motion Correct equation \\
Correct \(T\)
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline 3(a)

(b)

(c) \& \[
\left.\left.$$
\begin{array}{l}
12 g-T=12 a \\
T-8 g=8 a \\
8 a+8 g=12 g-12 a \\
20 a=4 g
\end{array}
$$\right] $$
\begin{array}{rl}
a=\frac{4 g}{20}=1.96 \mathrm{~m} \mathrm{~s}^{-2} \\
T & =8 \times 1.96+8 \times 9.8 \\
\quad=94.1 \mathrm{~N}
\end{array}
$$\right] $$
\begin{aligned}
7 & =0+1.96 t \\
t & =\frac{7}{1.96}=3.57 \mathrm{~s}(\mathrm{to} 3 \mathrm{sf})
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 5

2 \& | Equation of motion for one particle Correct equation |
| :--- |
| Equation of motion for other particle Correct equation |
| ag Correct a from correct working |
| Substituting value for a into equation of motion to find T |
| Correct T |
| Using constant acceleration to find t |
| Correct t |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MBM1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline 4(a)
(b) \& \[
\begin{aligned}
\& 2 \times 5=40 v \\
\& v=\frac{10}{40}=0.25 \mathrm{~m} \mathrm{~s}^{-1} \\
\& 2 \times 6+40 \times 0.25=42 v \\
\& v=\frac{22}{42}=\frac{11}{21}=0.524 \mathrm{~m} \mathrm{~s}^{-1}(\text { to } 3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
3 \& \begin{tabular}{l}
Three term conservation of momentum equation \\
Correct \(v\) \\
Three term conservation of momentum equation Correct equation \\
Correct \(v\)
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline 5(a)
(b)

(c) \& $$
\begin{aligned}
& T_{1}=4 \times 9.8=39.2 \mathrm{~N} \\
& T_{2}=3 \times 9.8=29.4 \mathrm{~N} \\
& 39.2 \sin 43^{\circ}=29.4 \sin \theta \\
& \sin \theta=\frac{39.2 \sin 43^{\circ}}{29.4}=0.9093 \\
& \theta=65.4^{\circ} \\
& 9.8 m=39.2 \cos 43^{\circ}+29.4 \cos \theta \\
& m=\frac{39.2 \cos 43^{\circ}+29.4 \cos \theta}{9.8}=4.17 \mathrm{~kg}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2

5 \& | Correct tension in left string |
| :--- |
| Correct tension in right string |
| Resolving horizontally |
| Correct equation |
| Correct expression for $\sin \theta$ |
| Finding θ |
| ag Correct θ from correct working |
| Resolving vertically |
| Correct equation |
| Finding m |
| Correct m |

\hline \& Total \& \& 11 \&

\hline | $6(a)$ |
| :--- |
| (b) |
| (c) |
| (d) | \& \[

$$
\begin{aligned}
& \text { (} \\
& 0.8 R_{A}=0.5 \times 40 \times 9.8 \\
& R_{A}=\frac{0.5 \times 40 \times 9.8}{0.8}=245 \mathrm{~N} \\
& R_{B}=245+40 \times 9.8=637 \mathrm{~N} \\
& 0.8 R_{A}=0.5 \times 40 \times 9.8+3 \times 5 \times 9.8 \\
& R_{A}=\frac{0.5 \times 40 \times 9.8+3 \times 5 \times 9.8}{0.8} \\
& \quad=429 \mathrm{~N}(\text { to } 3 \mathrm{sf}) \\
& R_{B}=429+40 \times 9.8+5 \times 9.8 \\
& =870 \mathrm{~N}(\text { to sf })
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 | \& 1

3
2

6 \& | Correct force diagram |
| :--- |
| Moment equation to find R_{A} |
| Correct equation |
| ag Correct reaction from correct working |
| Use of equilibrium to form an equation |
| Correct reaction |
| Four term moment equation |
| Correct equation |
| Finding reaction |
| Correct reaction |
| Equation to find other reaction |
| Correct reaction |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

MBM1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
7(a)
\] \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 19 \mathbf{i}+13 \mathbf{j}=35 \mathbf{i}+45 \mathbf{j}+8 \mathbf{a} \\
\& \mathbf{a}=\frac{19-35}{8} \mathbf{i}+\frac{13-45}{8} \mathbf{j}=-2 \mathbf{i}-4 \mathbf{j} \\
\& \mathbf{r}=(35 \mathbf{i}+45 \mathbf{j}) t+\frac{1}{2}(-2 \mathbf{i}-4 \mathbf{j}) t^{2} \\
\& \mathbf{r}=\left(35 t-t^{2}\right) \mathbf{i}+\left(45 t-2 t^{2}\right) \mathbf{j} \\
\& 35 t-t^{2}=300 \\
\& t^{2}-35 t+300=0 \\
\& t=15 \text { or } t=20 \\
\& 4 t-2 t^{2}=225 \\
\& 2 t^{2}-45 t+225=0 \\
\& t=7.5 \text { or } t=15 \\
\& t=15 \text { seconds }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 3
3

7 \& | Constant acceleration equation to find a Correct equation ag Correct a from correct working |
| :--- |
| Use of constant acceleration equation Correct i component |
| Correct \mathbf{j} component |
| Splitting into components correctly |
| Forming equation for one component |
| Solving quadratic |
| Two correct solutions |
| Forming correct second quadratic |
| Solving quadratic for two solutions Correct final solution |

\hline \& Total \& \& 13 \&

\hline | $8(a)(\mathrm{i})$ |
| :--- |
| (ii) |
| (b) | \& \[

$$
\begin{aligned}
& 20 \sin 30^{\circ} t-4.9 t^{2}=0 \\
& t=0 \text { or } t=\frac{20 \sin 30^{\circ}}{4.9}=2.04(\text { to } 3 \mathrm{sf}) \\
& R=20 \cos 30^{\circ} \times 2.04=35.3 \mathrm{~m} \\
& 20 \sin 30^{\circ} t-4.9 t^{2}=2 \\
& 4.9 t^{2}-10 t+2=0 \\
& t=0.2248 \text { or } t=1.82 \\
& v_{y}=20 \sin 30^{\circ}-9.8 \times 0.2248=7.797 \\
& v_{x}=20 \cos 30^{\circ}=17.32 \\
& v=\sqrt{v_{x}^{2}+v_{y}^{2}}=19.0 \mathrm{~m} \mathrm{~s}^{-1}(\text { to } 3 \mathrm{sf})
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| B1 |
| M1 |
| A1 | \& 4

2

8 \& | Forming equation for time of flight Correct equation |
| :--- |
| Solving quadratic equation |
| ag Correct solution from correct working |
| Calculation of range |
| Correct range |
| Equation to find t at height of 2 |
| Correct equation |
| Correct times |
| Calculating vertical component |
| Correct vertical component |
| Finding horizontal component |
| Finding speed from components |
| Correct speed |

\hline \& Total \& \& 14 \&

\hline \& TOTAL \& \& 80 \&

\hline
\end{tabular}

