GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B MBS5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

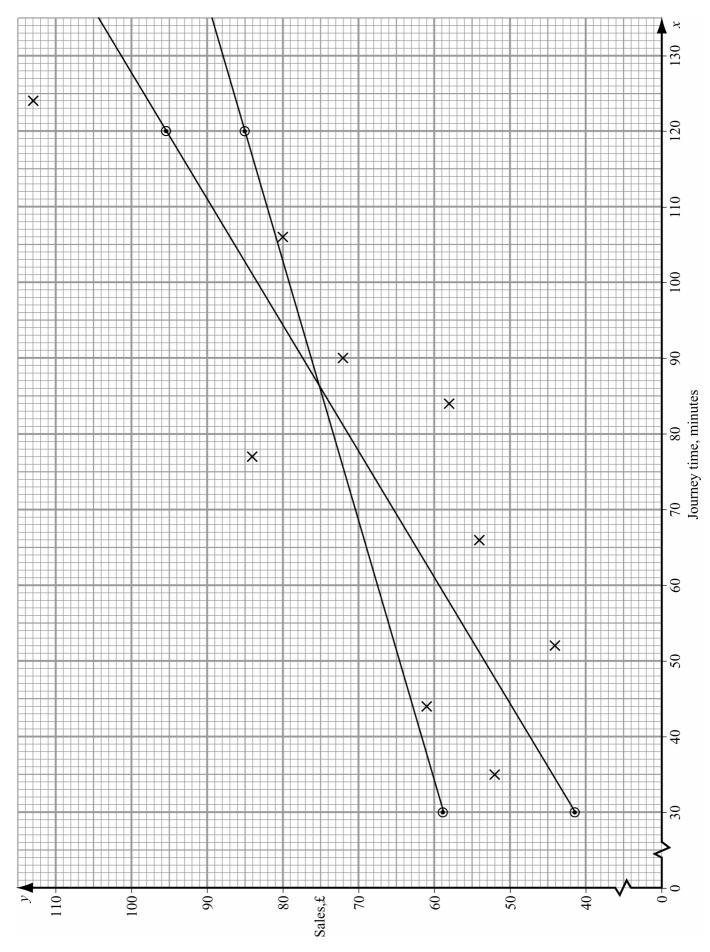
Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>-x</i> ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme


No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question	Solution	Marks	Total	Comments
Number				
and Part				
1(a)	r = 0.925	B3	3	0.925 (0.924 to 0.925)
				Allow B2 (0.92 to 0.93)
				Allow M2 A1 if method shown
(b)	Although correlation coefficients are			
	almost identical, data set A shows a	E1		Correlation coefficients similar but
	distinct non-linear pattern while data set B			patterns differ
	appears to be random variation about a			
	straight line.	E1	2	A non-linear
				Allow correlation coefficient not suitable
				for A
	Total		5	
2(a)	$H_0: \mu = 200$	B1		one correct hypothesis - generous
	$H_1: \mu > 200$	B1		both hypotheses correct - ungenerous
	$\bar{x} = 205.545$			
				6
	-205.545 - 200 - 2.07	M1		use of $\frac{6}{\sqrt{11}}$
	$z = \frac{205.545 - 200}{\frac{6}{\sqrt{11}}} = 3.07$			V I I
	$\overline{\sqrt{11}}$	m1		correct method for z - ignore sign
	VII	A1		3.07 (3.06 to 3.07)
	cv for 5% 1-sided risk 1.6449	B1		1.6449 (1.64 to 1.65)
	Reject H ₀	A1√	7	Correct conclusion - must be compared
	Conclude mean time to spoilage is greater			with correct tail of z
	than 200 hours.			
(b)	No problem unless the 3 containers sold	E1		Comment on randomness of 3 containers
	could not be treated as a random sample.			
	Unlikely to bias sample.	E1	2	Correct deduction
				Allow comment on reduced sample size
(c)	Claiming mean time to spoilage is more	E1		Idea of Type 1 error
	than 200 hours when it isn't	E1	2	In context - must be 1-sided
(d)(i)	0.05	B1		0.05 cao
(ii)	0	B2	3	0 cao
	Total		14	

Mathematics and Statistics B Statistics 5 MBS5 June 2004

Question	Solution	Marks	Total	Comments
Number				
and Part				
3(a)	(see graph on next page)	M1		Method
		A1	2	Reasonably accurate plot by eye -
				allow one small slip.
(b)	y = 23.4 + 0.601x	B2		23.4 (23.35 to 23.45)
		B2		0.601 (0.6 to 0.602)
				Allow M1 A1 if method shown
	x = 30, y = 41.4 $x = 120, y = 95.5$			
	+ line	M1		Method - their line
		A1	6	Accurate plot - by eye
(c)(i)	$72 - 23.39 - 0.6010 \times 90 = -5.5$	M1		Method for one residual - ignore sign
	$44 - 23.39 - 0.6010 \times 52 = -10.6$	m1		Method for both residuals - consistent
				signs
		A1	3	-5.5 (-5.4 to -5.6) and
				-10.6 (-10.6 to -10.7)
(ii)	12.0 allow 11.3	B1	1	12.0 (11.9 to 12) or 11.3(11.2 to 11.3)
(d)(i)	x = 30, $y = 58.9$ $x = 120$, $y = 85.0$	M1		Method
	+ line	A1	2	Reasonably accurate plot (by eye)
(ii)	On average Ariane's sales are low on	E1		Ariane lower on short journeys
	short journeys and higher on long	E1		Ariane higher on long journeys
	journeys when compared to Desmond.			
	Desmond's sales more predictable	E1	3	Desmond more predictable/lower
				residuals
	Total		17	

Graph for Question 3

Question	Solution	Marks	Total	Comments
Number and Part				
4(a)	$\bar{x} = 135.6$	B1		135.6 cao
(u)	95% confidence interval for mean is	DI		
	$135.6 \pm 1.96 \times 0.42$	B1		1.96
	$135.6 \pm 1.96 \times \frac{0.42}{\sqrt{9}}$	M1		Use of $\frac{0.42}{\sqrt{9}}$
				$\sqrt{9}$
	i.e. 135.6 ± 0.274	m1		Correct method for interval
	135.33 to 135.87	A1	-	Answer given to 4,5 or 6 sf
		A1	6	135.33 (135.3 to 135.4) and 135.87 (135.8 to 135.9)
				Or 135.6 cao \pm 0.274 (0.274 to 0.275)
(b)	125.0 1 1 0 (3.9	N (1		
	$135.8 \pm 1.96 \times \frac{3.9}{\sqrt{60}}$	M1		Correct method - their z
	135.8± 0.987			
	134.81 to 136.79	A1	2	134.81 (134.8 to 134.820) and
				136.79 (136.78 to 136.8)
				Or 135.8cao \pm 0.987 (0.98 to 1)
(c)(i)	Decrease	B1	1	Decrease
(ii)	Increase - narrower interval \rightarrow more	E1 E1	2	Increase Reason
	likely to identify need for overhaul if $\mu \neq 135.0$	EI	2	Keason
	$\mu + 155.0$			
(d)	Large variability as in (b) will lead to	E1		Large variability unsatisfactory/makes
	unsatisfactory production even if mean on			deviation from 135 difficult to detect.
	target. Might prefer small variability as in	E1	2	Small variability with mean slightly
	(a) even if mean slightly off target. Total		13	off target may be preferable
			15	
5(a)	$0.6^3 = 0.216$	M1		Method
		A1	2	0.216 cao acf
(b)	$1 - 0.6^3 - 0.4^3$	M1		Attempt at 1 – P(GGG) – P(LLL) oe
		m1		Completely correct method
	= 0.72	A1	3	0.72 cao acf
(c)	L LGL $0.4 \times 0.6 \times 0.4$	M1		Reasonable attempt at enumerating
	$L GLL + 0.6 \times 0.4 \times 0.4$	ml		possibilities Correct method
	= 0.192	A1	3	0.192 cao
(d)	- 0.192	M1	5	Method
(4)		Al	2	0.4
(e)	$L GGG = 0.6^3$	M1		Reasonable attempt at enumerating
	L LGGG + 0.4×0.6^3			possibilities
	L GLGG + 0.4×0.6^3	m1		Reasonable attempt at evaluating
	$L GGLG + 0.4 \times 0.6^3$	m 1		probability Completely correct method
	= 0.475	ml A1	4	Completely correct method 0.475 (0.475 to 0.4755)
	- 0.475	111	14	
	Total		14	

Question	Solution	Marks	Total	Comments
Number				
and Part				
6(a)	$z_1 = \frac{18 - 19.5}{1.2} = -1.25$			
	1.2			
	$z_2 = \frac{16.5 - 19.5}{1.2} = -2.5$	M1		Method for <i>z</i> ignore sign
	1.2	A1		Both z's correct
	P(16.5 < X < 18) = 0.99379 - 0.89435	M1		A correct use of normal tables
		m1		Completely correct method
	= 0.0994	A1	5	0.0994 (0.099 to 0.1)
(b)(i)	$z = \frac{20 - 19.5}{\frac{1.2}{\sqrt{6}}} = 1.0206$	B1		use of $\frac{1.2}{\sqrt{6}}$
	<u>1.2</u> <u>1.2</u>	DI		$\sqrt{6}$
	$\sqrt{6}$	M1		Correct method for <i>z</i>
		m1		Wholly correct method
	P(mean > 20) = 1 - 0.8463 = 0.154	A1	4	0.154 (0.153 to 0.155)
(ii)	2 hours allows 20 minutes per match.	E1		Attempt to calculate average time per
	Assuming length of games are			game
	independent - even if no time is lost			
	between games there is a non-trivial			
	probability that 6 games will take longer			
	than 2 hours.	E1	2	Sensible conclusion
(c)	$\mu + 0.8416\sigma = 18$	B1		0.8416 and 1.7507
	$\mu + 1.7507\sigma = 19$	B1		Their $z \times \sigma$
	$0.9091 \sigma = 1$	B1		Both correct equations ignore signs
	σ = 1.10 min	M1		Method for σ
	$\mu = 17.1 \text{ min}$	m1		Method for μ
		A1	6	1.10 (1.09 to 1.11) and 17.1 (17 to 17.1)
	Total		17	
	TOTAL		80	