GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B MBM3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>x</i> ee		deduct <i>x</i> marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MR - x deducted x marks for mis-read
isw ignored subsequent working
isit ignored subsequent working
bod given benefit of doubt
wr work replaced by candidate
fb formulae book

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question	Solution	Marks	Total	Comments
Number				
and Part				
1(a)	$v = 0 + 0.5 \times 10 = 5 \text{ ms}^{-1}$	M1		Use of $v = u + at$
		A1	2	Correct v
(b)	$s = \frac{1}{2} \times 0.5 \times 10^2 = 25 \text{ m}$	M1		Use of a constant acceleration equation to
	2 2			find <i>s</i>
		A1	2	Correct s
	E 40000 200000 0 5	N/1		There terms a most is a first time.
(c)	$F - 40000 = 200000 \times 0.5$			I hree term equation of motion
	E = 140000 N		2	Correct equation
	r = 140000 N	AI	3	
2(a)	$R = 60 \times 9.8 \times \cos 40^\circ = 450 \text{ N}$	M1	1	Resolving perpendicular to the plane
2(a)	$K = 00 \times 9.8 \times 00540^{\circ} = 450^{\circ} N$		2	Correct reaction force
		711	2	
(b)	$F = 60 \times 9.8 \times \cos 50^\circ = 378$	M1		Resolving parallel to the plane
		A1		Correct <i>F</i>
	$F < \mu R$	m1		Use of $F \le \mu R$ or $F = \mu R$
	$\mu > 0.839$	Δ1	4	Correct inequality
	$\mu \ge 0.000$		-	A agent 0.840
				Accept 0.840
(c)	$F = 0.2 \times 60 \times 9.8 \cos 40^{\circ}$	M1		Use of $F = \mu R$ to find F but not with
				R = 60 q
		A 1		Commont F
	$60a = 60 \times 9.8 \cos 50^{\circ} -$	M1		Correct <i>F</i>
	$0.2 \times 60 \times 9.8 \cos 40^\circ$	A1		Correct equation
	4.80		-	
	a = 4.80 ms	Al	5	Correct acceleration
2(z)(z)	1 otal		11	
5(a)(1)	b - 3 - 4n b - 7	B 1	1	Correct value of h
(ii)	a = 8 - 2t	R1	1	Correct expression
(11)			1	
(b)	$v = \int 8 - 2t \mathrm{d}t$	M1		Integrating acceleration
	$-8t-t^2+c$	Δ 1		Correct velocity with or without a
	2 = 32 - 16 + c	AI		
	c = -14	m1		Finding c
	$v = 8t - t^2 - 14$	A 1	Λ	Correct final expression
	$\frac{r-n-l}{Total}$		-+ 6	

Mathematics and Statistics B Mechanics 3 MBM3 June 2004

MBM3 (cont)

Question	Solution	Marks	Total	Comments
Number and Part				
4(a)	$\mathbf{v} = 4\cos t\mathbf{i} - 4\sin t\mathbf{j} + 6\mathbf{k}$	M1		Differentiating position vector
		A1	2	Correct velocity vector
(1.)				
(0)	$\mathbf{a} = -4 \sin n - 4 \cos n$		2	Differentiating the velocity vector
		AI	2	
(c)	$a = \sqrt{16\sin^2 t + 16\cos^2 t}$	M1		Finding magnitude
		A1	2	Correct expression for magnitude
	$=\sqrt{16(\sin^2 t + \cos^2 t)}$	AI	3	Using trig identity to get the printed
	$=\sqrt{16}$			k component
	= 4			ag
(d)	$16 \sin^2 4 + 16 \cos^2 4 + 26$	M1		Finding magnitude
	$v = \sqrt{10} \sin t + 10 \cos t + 30$	IVI I		r inding magnitude
	$=\sqrt{52}$	A1		Correct expression for magnitude
	= /.21	A 1	2	$\sqrt{52}$ or equivalent
	$Or \ V = 32$	AI	10	
5(a)(i)	$KE = 2 \times 9.8 \times 4 = 78.4 \text{ J}$	M1	10	Use of KE = change in PE with $h = 4$
		A1	2	Correct energy
(ii)	$78.4 = \frac{1}{2} \times 2 \times v^2$	M1		Use of kinetic energy or constant
	2			in v based on a fall of 4 metres
		A1		Correct equation
	$v = \sqrt{78.4} = 8.85 \text{ ms}^{-1}$	A1	3	Correct v
(b)(i)	80 2	M1		Calculation of EPE shown
(0)(1)	$78.4 + 19.6x = \frac{60}{2 \times 4}x^2$	Al		Correct EPE
	$0 - 10 x^2$ 10 6 $x - 78 4$	M1		Three term energy equation
	0 = 10x - 19.0x - 78.4	Al	4	Correct equation from correct working
(ii)	$19.6 \pm \sqrt{19.6^2 - 4 \times 10 \times (-78.4)}$	M1		Solving the quadratic equation
	$x = \frac{2 \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1}}{2 \times 10^{-1}}$	1,111		Serving the quantum equation
	= 3.95 or - 1.99	A1		Correct solutions
	Max $L = 7.95 m$	A1	3	Adding 4 to their x
				_
(c)	No air resistance	B1	1	Appropriate assumption
	Light rope		12	
	l otal		13	

Question	Solution	Marks	Total	Comments
Number				
and Part				
6(a)	$\mathbf{r} = 5\mathbf{j}$	B1	1	Correct vector
(b)	$4t - 0.01t^2 = 0$	M1		Equation based on i component
		A1		Correct equation
	t = 0 or t = 400	M1		Solving the quadratic
	t = 400	A1	4	Selecting $t = 400$
(c)	$\mathbf{v} = (4 - 0.02t)\mathbf{i} + (-3 - 0.08t)\mathbf{j}$	MI		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
	4 0.02t = 2 + 0.08t	Al		Correct velocity vector
	4 - 0.02i = 3 + 0.08i	MI		Equation using both components
	. 10	AI		Correct equation
	t = 10	A1	5	Correct <i>t</i>
	Total		10	
7(a)	$F = 420 + 1200 \times 9.8 \sin 6^{\circ}$	M1		Finding force as the resultant of two
				forces
		A1		Correct force
	$P = (420 + 1200 \times 9.8 \sin 6^{\circ}) \times 20$	ml		Use of $P = Fv$
	= 33000 W (to 3 sf)	A1	4	Correct answer from correct expression
(b)	420 = 20k	M1		Equation for k involving 420
(-)	k = 21	A 1	2	Correct value of k
	K = 21	AI	2	
(c)	F = 21v	M1		Expression for F in terms of v
	$32985 - 21y^2$	M1		Use of $P = Fv$ to form an equation
	52705 - 217			with v^2
		A1√		Correct equation
	$v = \sqrt{\frac{32985}{21}} = 39.6 \mathrm{ms}^{-1}$	A1√	4	Correct <i>v</i>
	Total		10	

MBM3 (cont)

Question	Solution	Marks	Total	Comments
Number				
and Part				
8(a)	$R\cos\theta = 1000g$	M1		Resolving vertically to form a two term
	p = 9800			equation
	$K = \frac{1}{\cos \theta}$	A1	2	ag Correct equation from correct working
(b)	$R \sin \theta - m \times \frac{10^2}{10^2}$	M1		Resolving horizontally to get a two term
	$A \sin \theta = m \times \frac{40}{40}$			equation
		A1		Correct equation
	$g \tan \theta = 2.5$	M1		Substituting for R
		A1		Correct equation
	$\tan \theta = \frac{2.5}{0.8} = 0.2551$			
	9.0	Δ1	5	Correct angle
	$\theta = 14.5$	ЛІ	5	Contect angle
(0)	$F\cos 3^\circ + R\sin 3^\circ = 1000 \times \frac{10^2}{10^2}$	M1		Resolve horizontally with three terms
	40	A1		Correct equation
	$R\cos 3^\circ - F\sin 3^\circ = 9800$	M1		Resolve vertically with three terms
		A1		Correct equation
	$F(\cos^2 3^\circ + \sin^2 3^\circ) =$	ml		Solve for <i>F</i>
	$2500\cos 3^\circ - 9800\sin 3^\circ$			
	$F = \frac{2500\cos 3^\circ - 9800\sin 3^\circ}{1000}$			
	1			
	=1980 N (to 3 sf)	A1	6	Correct F
	Or			
	$1000 \times \frac{10^2}{\cos 3^\circ} = F + 1000 g \sin 3^\circ$			M1A1 for RHS
	40			M1A1 for LHS
	F = 2497 - 513 = 1980			m1A1 for finding <i>F</i>
	Total		13	
	TOTAL		80	

MBM3 (cont)