GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B MBM2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>-x</i> ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question Number and Part	Solution	Marks	Total	Comments
1 (a)(i)	0 = 8 - 4h			
	h = 2	B1	1	Correct value of <i>h</i>
(ii)	a=8-2t	B1	1	Correct expression
		DI	1	Concer expression
(b)	$v = \int 8 - 2t dt$	M1		Integrating acceleration
	=8t - t2 + c 2=32-16+c	A1		Correct velocity with or without c
	2 = 32 - 16 + c			
	<i>c</i> = -14	m1		Finding <i>c</i>
	$v = 8t - t^2 - 14$	A1	4	Correct final expression
	Total		6	· · · · · · · · · · · · · · · · · · ·
2 (a)	$\mathbf{v} = 4\cos t\mathbf{i} - 4\sin t\mathbf{j} + 6\mathbf{k}$	M1		Differentiating position vector
		A1	2	Correct velocity vector
(b)	$\mathbf{a} = -4\sin t\mathbf{i} - 4\cos t\mathbf{j}$	M1	2	Differentiating the velocity vector Correct acceleration
		A1 M1	Z	Finding magnitude
(c)	$a = \sqrt{16\sin^2 t + 16\cos^2 t}$	A1		Correct expression for magnitude
	$=\sqrt{16(\sin^2 t + \cos^2 t)}$			
	$=\sqrt{16}$	A1	3	ag Using trig identity to get the printed
				answer with correct working including the
	= 4	M1		k component Finding magnitude
(d)	$v = \sqrt{16\sin^2 t + 16\cos^2 t + 36}$	A1		Correct expression for magnitude
	$=\sqrt{52}$	A1	3	$\sqrt{52}$ or equivalent
	= 7.21	111	5	
	Or $v^2 = 52$			
	Total		10	
3 (a) (i)	$KE = 2 \times 9.8 \times 4 = 78.4 J$	M1		Use of KE = change in PE with $h = 4$
		A1	2	Correct energy
(ii)	$78.4 = \frac{1}{2} \times 2 \times v^2$			
	2	M1		Use of kinetic energy or constant
				acceleration formula to form an equation in <i>v</i> based on a fall of 4 metres
		A1		Correct equation
	$v = \sqrt{78.4} = 8.85 \mathrm{ms}^{-1}$	A1	3	Correct v
(b) (i)	$v = \sqrt{78.4} = 8.85 \text{ ms}^{-1}$ 78.4 + 19.6x = $\frac{80}{2 \times 4} x^2$	M1		Calculation of EPE shown
	$70.4 + 19.0x - \frac{1}{2 \times 4}x$	A1		Correct EPE
	2	M1		Three term energy equation
<i>2</i> 15	$0 = 10x^2 - 19.6x - 78.4$	A1	4	ag Correct equation from correct working
(ii)	$x = \frac{19.6 \pm \sqrt{19.6^2 - 4 \times 10 \times (-78.4)}}{2 \times 10}$	M1		Solving the quadratic equation
	= 3.95 or - 1.99	A1		Correct solutions
	Max $L = 7.95 m$	A1√	3	ft Adding 4 to their x
(-)	No sin nosistanos			_
(c)	No air resistance	B1	1 13	Appropriate assumption
	Total		15	

Mathematics and Statistics B Mechanics 2 MBM2 June 2004

Mark Scheme

MBM2 (cont)

Question	Solution	Marks	Total	Comments
Number				
and Part	E 100 1000 0.0 1 (0 1(10			
4 (a)	$F = 420 + 1200 \times 9.8 \sin 6^{\circ} = 1649$	M1		Finding force as the resultant of two forces
		A1		Correct force
	$P = (420 + 1200 \times 9.8 \sin 6^{\circ}) \times 20$	m1		Use of $P = Fv$
	= 33000 W (to 3sf)	A1	4	Correct answer from correct expression
(b)	420 = 20k	M1		Equation for <i>k</i> involving 420
	<i>k</i> = 21	A1	2	Correct value of k
(c)	F = 21v	M1	-	Expression for <i>F</i> in terms of <i>v</i>
	$32985 = 21v^2$	M1		Use of $P = Fv$ to form an equation with v^2
		A1√		ft Correct equation
	$n = \sqrt{32985} = 30.6 \mathrm{mg}^{-1}$			
	$v = \sqrt{\frac{32985}{21}} = 39.6 \mathrm{ms}^{-1}$	A1√	4	ft Correct <i>v</i>
	Total		10	
5 (a)	$R\cos\theta = 1000g$	M1		Resolving vertically to form a two term
	$R = \frac{9800}{\cos\theta}$	A1	2	equation
	$\cos \theta$		2	ag Correct equation from correct working
(b)	$R\sin\theta = m \times \frac{10^2}{40}$	M1		Resolving horizontally to get a two term
(-)	40	A1		equation Correct equation
	$g \tan \theta = 2.5$	M1		Substituting for <i>R</i>
		A1		Correct equation
	$\tan \theta = \frac{2.5}{9.8} = 0.2551$			
	$\rho = 1.12^{\circ}$	A1	5	Correct angle
	$F \cos 3^\circ + R \sin 3^\circ = 1000 \times \frac{10^2}{40}$	M1	5	Resolve horizontally with three terms
(c)	$F\cos 3^\circ + R\sin 3^\circ = 1000 \times \frac{10}{40}$	A1		Correct equation
	$R\cos 3^\circ - F\sin 3^\circ = 9800$	M1		Resolve vertically with three terms
	$F(\cos^2 3^\circ + \sin^2 3^\circ)$	A1		Correct equation
	$= 2500 \cos 3^\circ - 9800 \sin 3^\circ$			
	$F = \frac{2500\cos 3^\circ - 9800\sin 3^\circ}{1}$	m1		Solve for <i>F</i>
	= 1980 N (to 3 sf)	A1	6	Correct F
	Or	411	0	
	$1000 \times \frac{10^2}{40} \cos 3^\circ = F + 1000g \sin 3^\circ$	(M1A1)		for RHS
	$\frac{1000}{40}$ $\frac{-1}{40}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$	(M1A1) $(M1A1)$		for LHS
	F = 2497 - 513 = 1980	(m1A1)		finding F
	Total		13	

IVIDIVIZ (CUIII)	MBM2	(cont)
------------------	------	--------

Question Number	Solution	Marks	Total	Comments
and Part				
6	$\overline{x} = \frac{\int \sqrt{1 + \left(\frac{1}{5}\right)^2} x^2 dx}{\int \sqrt{1 + \left(\frac{1}{5}\right)^2} x dx} = \frac{\int x^2 dx}{\int x dx}$	M1 M1 A1		x^2 in numerator x in denominator valid expression
	$=\frac{\left[\frac{x^{3}}{3}\right]_{0}^{5}}{\left[\frac{x^{2}}{2}\right]_{0}^{5}}=\frac{\frac{125}{3}}{\frac{25}{2}}=\frac{10}{3}$	m1 A1	5	Evaluation of integrals ag Correct answer from correct working
	Total		5	
7(a)	a = 0.05	B1		Amplitude = 0.05
	$6^2 = \omega^2 (0.05^2 - 0.04^2)$	M1		Use of SHM equation with $x = 0.04$
	$\boxed{0.36}$	A1		Correct equation
	$\omega = \sqrt{\frac{0.36}{0.0009}} = 20$	ml		Solving for ω
	$T = \frac{2\pi}{20} = \frac{\pi}{10}$	A1		Correct ω
		A1	6	ag Correct period from correct working
(b)	$v = 0.05 \times 20 = 1 \mathrm{ms}^{-1}$	M1	_	Using $v = a\omega$
		A1	2	Correct v
(c)	$a_{\rm max} = 0.05 \times 20^2 = 20 {\rm ms}^{-2}$	M1		Use of $a_{\rm max} = a\omega^2$
		A1	2	Correct acceleration
				Allow ± 20
	Total		10	

Question	Solution	Marks	Total	Comments
Number				
and Part	1	M1		Ling Nouton's second low to form a
8 (a)	$mv \frac{dv}{dr} = -mg - mkv$	IVII		Using Newton's second law to form a
	<u>et</u>			differential equation with $v \frac{dv}{dr}$
	$\frac{v}{g+kv}\frac{\mathrm{d}v}{\mathrm{d}x} = -1$	A1		Correct differential equation
	$g + kv \mathrm{d}x$			concer uniciential equation
	$\int \frac{v}{g+kv} dv = \int -1 dx$	m1		Separation of variables
	$\int \frac{v}{g+kv} \mathrm{d}v = -x + c$	A1	4	ag Correct answer from correct working
(b)	$\int \frac{1}{k} - \frac{g}{k(g+kv)} dv = -x + c$	M1		Substituting given identity
	$\frac{v}{k} - \frac{g}{k^2} \ln g + kv = -x + c$	M1		Integration to get <i>v</i> and ln terms
	$\frac{-k}{k} - \frac{-k}{k^2} \ln g + kv = -k + c$	A1		In term correct
		A1		v term correct
	$x = 0, v = 20 \Longrightarrow c = \frac{20}{k} - \frac{g}{k^2} \ln(g + 20k)$	m1		Finding <i>c</i>
	R R	A1		Correct c
	$x = \frac{20 - v}{k} + \frac{g}{k^2} \ln\left(\frac{g + kv}{g + 20k}\right)$	A1	7	ag Correct final answer from correct working
(c)	v = 0			
	$x = \frac{20-0}{k} + \frac{g}{k^2} \ln\left(\frac{g+k \times 0}{g+20k}\right)$	M1		Substituting $v = 0$
	$x = \frac{20}{k} + \frac{g}{k^2} \ln\left(\frac{g}{g+20k}\right)$	A1	2	Correct height
	Total		13	
	TOTAL		80	

MBM2 (cont)