

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

# GCE

# **Mathematics & Statistics B**

# **Unit MBS7**

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

#### AQA

### Key to mark scheme

| Μ          | mark is for                                         | method                               |
|------------|-----------------------------------------------------|--------------------------------------|
| m          | mark is dependent on one or more M marks and is for | method                               |
| Α          | mark is dependent on M or m mark and is for         | accuracy                             |
| В          | mark is independent of M or m marks and is for      | method and accuracy                  |
| Ε          | mark is for                                         | explanation                          |
| or ft or F |                                                     | follow through from previous         |
|            |                                                     | incorrect result                     |
| CAO        |                                                     | correct answer only                  |
| AWFW       |                                                     | anything which falls within          |
| AWRT       |                                                     | anything which rounds to             |
| AG         |                                                     | answer given                         |
| SC         |                                                     | special case                         |
| OE         |                                                     | or equivalent                        |
| A2,1       |                                                     | 2 or 1 (or 0) accuracy marks         |
| -x EE      |                                                     | Deduct <i>x</i> marks for each error |
| NMS        |                                                     | No method shown                      |
| PI         |                                                     | Perhaps implied                      |
| c          |                                                     | Candidate                            |

### Abbreviations used in marking

| MC - x | deducted x marks for miscopy |
|--------|------------------------------|
| MR - x | deducted x marks for misread |
| ISW    | ignored subsequent working   |
| BOD    | gave benefit of doubt        |
| WR     | work replaced by candidate   |

## Application of mark scheme

| Correct answer without working   | mark as in scheme                     |
|----------------------------------|---------------------------------------|
| Incorrect answer without working | zero marks unless specified otherwise |

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

| Question           | Solution                                                                                                             | Marks       | Total | Comments                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------------------------|
| Number<br>and Part |                                                                                                                      |             |       |                                       |
| 1                  | $n = 25$ and $\sum (x - \bar{x})^2 = 4.08$                                                                           |             |       |                                       |
| (a)                | $X \sim normal$                                                                                                      | B1          |       | oe                                    |
|                    | CI for $\sigma^2$ is: $\frac{\sum (x - \overline{x})^2}{\chi^2(U)}$ to $\frac{\sum (x - \overline{x})^2}{\chi^2(L)}$ | M1          |       | use of; oe                            |
|                    | Degrees of freedom, $v = 25 - 1 = 24$                                                                                | B1          |       | cao                                   |
|                    | $95\% \Rightarrow 0.025$ and 0.975, so values are:<br>12.401 and 39.364                                              | B1          |       | both; awrt 12.4 and 39.4              |
|                    | CI for $\sigma^2$ is thus : $\frac{4.08}{39.364}$ to $\frac{4.08}{12.401}$                                           | A1√         |       | ft on $\chi^2$ and equivalent to 4.08 |
|                    | = (0.104, 0.329)                                                                                                     | A1          | 6     | awrt                                  |
| (b)                | $\begin{array}{l} 0.25^2 = 0.0625 < 0.104 \\ 0.25 < \sqrt{0.104} = 0.32 \end{array}$                                 | B1√         |       | ft on CI                              |
|                    | Thus evidence that $\sigma > 5$                                                                                      | <b>B</b> 1√ | 2     | ft on CI                              |
|                    | Total                                                                                                                |             | 8     |                                       |
| 2                  | $D \sim \operatorname{Exp}(125)$                                                                                     |             |       |                                       |
| (a)                | $P(D < 100) = \left[ -e^{-\frac{d}{125}} \right]_{0}^{100} = 1 - e^{-\frac{100}{125}}$                               | M1          |       | use of PDF or DF                      |
|                    | $= 1 - e^{-0.8} = 0.550$ to 0.551                                                                                    | A1          | 2     | awfw; accept 0.55                     |
| (b)                | P(100 < D < 300) = P(D < 300) - (a)                                                                                  | M1          |       | use of; oe                            |
|                    | $(1 - e^{-2.4}) - (1 - e^{-0.8}) = e^{-0.8} - e^{-2.4}$<br>= 0.909 - 0.551 = 0.449 - 0.091                           | A1√         |       | correct expression; oe<br>ft on (a)   |
|                    | = 0.358 to 0.359                                                                                                     | A1          | 3     | awfw                                  |
|                    | Total                                                                                                                |             | 5     |                                       |

| Question | Solution                                                                            | Marks      | Total | Comments                                          |
|----------|-------------------------------------------------------------------------------------|------------|-------|---------------------------------------------------|
| Number   |                                                                                     |            |       |                                                   |
| 3(a)     | 1587.6                                                                              |            |       |                                                   |
| 5(u)     | $\beta = \frac{1307.0}{441} = -3.6$                                                 | B1         |       | cao                                               |
|          |                                                                                     |            |       |                                                   |
|          | $s^{2} = \frac{1}{(S_{yy} - \frac{S_{xy}^{2}}{S_{yy}})} =$                          | M1         |       | use of; oe                                        |
|          | $n-2\left(\begin{array}{cc} yy & S_{xx} \end{array}\right)$                         |            |       |                                                   |
|          | $1((1587.6)^2)$ 1225                                                                |            |       |                                                   |
|          | $\left \frac{1}{25}\right 6940.36 - \frac{(-1387.6)}{441}\right  = \frac{1223}{25}$ | A1         | 3     | awrt                                              |
|          | = 49                                                                                |            |       |                                                   |
|          |                                                                                     |            |       |                                                   |
| (0)      | $H_0: \beta = -3$ $H_1: \beta \neq -3$                                              | B1         |       | both                                              |
|          |                                                                                     |            |       |                                                   |
|          | SL $\alpha = 0.10$<br>DF $\nu = 27 - 2 = 25$                                        | <b>B</b> 1 |       | ca0                                               |
|          | $CV = \pm 1.708$                                                                    | B1         |       | awrt 1.71; ignore sign                            |
|          | â                                                                                   |            |       |                                                   |
|          | $t = \frac{\beta - \beta_0}{\sqrt{2}}$                                              | M1         |       | use of; accept no $\beta_0$                       |
|          | $\sqrt{\frac{s^2}{s}}$                                                              |            |       |                                                   |
|          | $\sqrt{D_{XX}}$                                                                     |            |       |                                                   |
|          | t = -3.6 - (-3) = -1.80                                                             |            |       |                                                   |
|          | $i = \frac{49}{\sqrt{49}} = -1.00$                                                  | A1         |       | awrt; accept –1.8                                 |
|          | V 441                                                                               |            |       |                                                   |
|          | Thus evidence, at 10% level, to reject the                                          |            |       |                                                   |
|          | claim that $\beta = -3$                                                             | A1√        | 6     | ft on <i>t</i> and CV, providing consistent signs |
|          | Total                                                                               |            | 9     |                                                   |

| Question    | Solution                                           | Marks    | Total | Comments                    |
|-------------|----------------------------------------------------|----------|-------|-----------------------------|
| Number      |                                                    |          |       |                             |
| 4 and 1 art | H <sub>0</sub> : number is constant                | B1       |       | at least H <sub>0</sub>     |
|             | $H_1$ : number is not constant                     |          |       |                             |
|             |                                                    |          |       |                             |
|             | SL $\alpha = 0.10$                                 | D1       |       |                             |
|             | $DF \qquad V = 7 - 1 = 6$                          | BI<br>D1 |       |                             |
|             | $CV \qquad \chi^2 = 10.645$                        | BI       |       | awiw 10.6 to 10.7           |
|             | $\sum$ 11                                          |          |       |                             |
|             | Mean per hour = $\frac{\sum \text{calls}}{\sum}$ = | M1       |       | use of                      |
|             | 7                                                  |          |       |                             |
|             | $\frac{931}{1} = 133$                              | . 1      |       |                             |
|             | 7                                                  | AI       |       | cao                         |
|             | $x^{2} - \sum (O - E)^{2} =$                       | 2.01     |       |                             |
|             | $\chi = \underline{\Box} - \underline{E}$          | MI       |       | use of                      |
|             |                                                    |          |       |                             |
|             | $\frac{1}{1}\sum (Q-133)^2 = 5.73$                 |          |       |                             |
|             | 133 2 (0 155) 5.75                                 | Al       |       | awtw 5.72 to 5.74           |
|             |                                                    |          |       |                             |
|             | Thus insufficient evidence, at 10% level,          |          |       |                             |
|             | to suggest that number per hour is not             |          |       |                             |
|             | constant                                           | Al√`     | 8     | It on $\chi^2$ and upper CV |
|             | Total                                              |          | 8     |                             |

| Question | Solution                                                     | Marks | Total | Comments                                               |
|----------|--------------------------------------------------------------|-------|-------|--------------------------------------------------------|
| Number   |                                                              |       |       |                                                        |
| and Part |                                                              |       |       |                                                        |
| 5        | $X \sim N(220, 20^2)$ $Y \sim N(175, 40^2)$                  |       |       |                                                        |
|          |                                                              |       |       |                                                        |
| (a)      | T = X + Y has:                                               |       |       |                                                        |
|          | mean = 395                                                   | B1    |       | cao                                                    |
|          | and                                                          |       |       |                                                        |
|          | variance = $2000$                                            | B1    |       | cao; accept sd = $44.7$ awrt                           |
|          |                                                              |       |       |                                                        |
|          | P(T < 300) =                                                 |       |       |                                                        |
|          | p(7 < 300 - 395) =                                           |       |       |                                                        |
|          | $P[Z < \frac{1}{\sqrt{2000}}] =$                             | M1    |       | standardising 300 using their $\mu$ and their $\sigma$ |
|          |                                                              |       |       |                                                        |
|          | $P(7 < 212) - \Phi(212) - 1 \Phi(212)$                       | m1    |       | attempted area change                                  |
|          | $\Gamma(\Sigma < -2.12) = \Psi(-2.12) = \Gamma = \Psi(2.12)$ | 1111  |       | attempted area enange                                  |
|          | = 0.0165 to $0.0170$                                         | A1    | 5     | awfw <sup>-</sup> accept 0 017                         |
|          |                                                              |       | Ũ     |                                                        |
| (b)      | D = X - Y has:                                               | M1    |       | use of difference                                      |
|          | mean $= \pm 45$                                              |       |       | cao: ignore sign                                       |
|          |                                                              | A1    |       | both mean and variance                                 |
|          | variance $= 2000$                                            |       |       | cao; accept sd = $44.7$ awrt                           |
|          |                                                              |       |       |                                                        |
|          | P(D > 0)                                                     |       |       |                                                        |
|          | (0-45)                                                       |       |       |                                                        |
|          | $= P Z > \frac{0.43}{2000}$                                  | M1    |       | standardising 0 using their $\mu$ and their $\sigma$   |
|          | (√2000)                                                      |       |       |                                                        |
|          | $= P(Z > -1.01) = \Phi(1.01)$                                |       |       |                                                        |
|          | = 0.841 to $0.844$                                           | A1    | 4     | awfw                                                   |
|          | Total                                                        |       | 9     |                                                        |

| Question | Solution                                                              | Marks | Total | Comments                                                                                                                      |
|----------|-----------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| Number   |                                                                       |       |       |                                                                                                                               |
| and Part | n = 40                                                                |       |       |                                                                                                                               |
| 0(u)     | п то                                                                  |       |       |                                                                                                                               |
|          | H <sub>0</sub> : $p = 0.10 (10\%)$                                    |       |       |                                                                                                                               |
|          | H <sub>1</sub> : $p > 0.10$ (10%)                                     | B1    |       | both; can be scored in (b)                                                                                                    |
|          | $P(X \ge 7 \mid 40, 0.1)$                                             | M1    |       | attempt at using B(40, 0.1) or Po(4)                                                                                          |
|          | $= 1 - P(X \le 6)$                                                    | A1    |       | $1 - \text{and} \le 6$                                                                                                        |
|          | = 1 - 0.9005 = 0.10<br>(> 0.05)                                       | A1    |       | awrt; accept 10%<br>(≥ 8 (CR) gives 0.0419)                                                                                   |
|          | Thus insufficient evidence, at 5% level, to support buyer's suspicion | A1√   | 5     | ft on <i>p</i> -value and 0.05 (5%)<br>or on 7 and CV (8)                                                                     |
| (b)      | n = 400                                                               |       |       |                                                                                                                               |
|          | Normal approximation with                                             | M1    |       | use of                                                                                                                        |
|          | mean ( $\mu$ ) = 40 and variance ( $\sigma^2$ ) = 36                  | A1    |       | cao; both                                                                                                                     |
|          | SL $\alpha = 0.05$<br>CV $z = 1.6449$                                 | B1    |       | awfw 1.64 to 1.65                                                                                                             |
|          | $z = \frac{x - \mu}{\sqrt{\sigma^2}}$                                 | M1    |       | standardising (51.5, 52, 52.5) using their $\mu$ and their $\sigma$                                                           |
|          | $z = \frac{(51.5 \text{ or } 52) - 40}{6} =$                          |       |       | $1.91 \Rightarrow p\text{-value of } 0.028$<br>$2.00 \Rightarrow p\text{-value of } 0.023$<br>(binomial $\Rightarrow 0.031$ ) |
|          | 1.91 to 2.00                                                          | A1    |       | awfw; accept 2                                                                                                                |
|          | Thus sufficient evidence, at 5% level, to support buyer's suspicion   | A1√   | 6     | ft on z and CV                                                                                                                |
|          |                                                                       |       |       | or on <i>p</i> -value and 0.05 (5%)                                                                                           |
|          | Total                                                                 |       | 11    |                                                                                                                               |

| Question           | Solution                                                                                                                       | Marks    | Total | Comments                                                         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------|
| Number<br>and Part |                                                                                                                                |          |       |                                                                  |
| 7                  | $\begin{array}{ccccccc} V & n & \overline{x} & s^2 \\ P & 11 & 201 & 124 \\ Q & 16 & 188 & 134 \end{array}$                    |          |       | allow use of suffices $x/1/P$<br>and $y/2/Q$ throughout question |
| (a)                | $s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$                                                                | M1       |       | allow misuse of $(s^2)^2$                                        |
|                    | Thus $s_p^2 = \frac{10 \times 124 + 15 \times 134}{25}$                                                                        | A1       | 2     | cao                                                              |
|                    | $-\frac{1}{25}$ (-150)                                                                                                         |          |       | ag                                                               |
| (b)                | H <sub>0</sub> : $\mu_x = \mu_y$<br>H <sub>1</sub> : $\mu_x > \mu_y$                                                           | B1<br>B1 |       | cao; oe<br>cao; oe                                               |
|                    | SL $\alpha = 0.01$<br><i>DF</i> $v = 11 + 16 - 2 = 25$<br>CV $t = 2.485$                                                       | B1<br>B1 |       | cao<br>awfw 2.48 to 2.49                                         |
|                    | $t = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{s_p^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}}$          | M1       |       | use of; accept $(\mu_x - \mu_y) = 0$<br>not z                    |
|                    | Thus $t = \frac{201 - 188}{\sqrt{130\left(\frac{1}{11} + \frac{1}{16}\right)}}$                                                | A1√      |       | substitution; ft on $s^2$ only                                   |
|                    | = 2.91                                                                                                                         | A1       |       | awrt                                                             |
|                    | Thus evidence, at 1% level, that pears of<br>Variety P weigh, on average, more than<br>pears of Variety Q (grower's suspicion) | A1√      | 8     | ft on $t/z$ and CV                                               |
|                    | Total                                                                                                                          |          | 10    |                                                                  |
|                    | TOTAL                                                                                                                          |          | 60    |                                                                  |