

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBS5

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
Number				
and part				
l(a)(1)	$z_1 = \frac{475 - 490}{10} = -1.5$	M1		Method for <i>z</i> - ignore sign
	$z_2 = \frac{510 - 490}{10} = 2.0$	m1		Both z's correct sign
	Probability between 475 and $510 =$			
	0.97725 - (1 - 0.93319) = 0.910	M1		A correct use of normal tables - generous
		m1		Completely correct method
		A1	5	0.910(0.91 - 0.911)
(ii)	$490 - 1.8808 \times 10 = 471.2 \mathrm{ml}$	B1		1.8808 (1.88 – 1.9)
		M1		Candidate's $z \times 10$
		m1		Completely correct method
		A1	4	471.2 (471.1 – 471.2 or 471)
(b)	$\mu - 1.0364 \times 10 = 475$	Bl		1.0364(1.03 - 1.04)
		MI		Candidate's $z \times 10$
	$\mu = 485.4$	ml		Completely correct method
-		AI	4	485.4 (485.3 – 485.4 or 485)
	Total	D 1	13	1.00
2(a)	x = 1.33	BI		1.33 cao
	90% confidence interval			0.11
	$1.33 \pm 1.6449 \times \frac{0.11}{5}$	M1		use of $\frac{0.11}{}$
	$\sqrt{8}$			$\sqrt{8}$
		B1		1.6449 (1.64 , 1.65)
		m1		Completely correct method - candidate's <i>z</i>
	1.33 ± 0.0640	A1	5	$1.33 \pm 0.0640 (0.063, 0.065)$
	(1.266 , 1.394)			or 1.266 (1.265, 1.267), allow 1.27
				and 1.394 (1.393, 1.395), allow 1.39
(b)	Evidence mean content at least 1.20 but	F1		Mean above 1 20
	some individual oranges less than 1 20	E1	2	Some individuals <1 20
	some marviadur oranges iess man 1.20	121	2	Some marviadurs (1.20
(c)	0.11			
	$2 \times 1.96 \times \frac{1}{\sqrt{\pi}} \le 0.03$	M1		Reasonable attempt at equation/inequality
	\sqrt{n}	B1		1.96 cao
		m1		Completely correct equation/inequality
				- allow incorrect z value
	$n \ge 206.6$	m1		Method of solution
	207 needed	A1	5	207 cao
				sc Trial & Improvement:
				205 – 210 B3
				200 – 220 B1
	Total		12	

Question	Solution	Marks	Total	Comments
Number				
and part $3(a)$	$\bar{x} = 37.75$	D 1		27.75 (27.7.27.8)
5(a)	x = 57.75	DI		57.75 (57.7, 57.8)
	$H_0: \mu = 40$	B1		One correct hypothesis - generous
	$H_1: \mu < 40$	B1		Both hypotheses correct - ungenerous
	$z = \frac{37.75 - 40}{5} = -1.56$	M1		use of $\frac{5}{\sqrt{12}}$
	$\overline{\sqrt{12}}$	m1		method for z - ignore sign
		A1		-1.56(-1.55, -1.57)
	c.v. -1.6449 accept H ₀ , conclude no	B1		- 1.6449 (- 1.64 , - 1.655) ignore sign
	significant evidence to show mean is less than 40 months.	A1	8	Conclusion, must be compared with correct tail of z
(b)	$H_0: \mu = 40$ $H_1: \mu < 40$	B1		Both hypotheses correct
	$z = \frac{39.2 - 40}{\frac{4.2}{\sqrt{160}}} = -2.41$	B1		-2.41 (-2.4, -2.42)
	c.v. -1.6449 reject H ₀ , significant evidence to show mean is less than 40.	A1	3	Conclusion, must be compared with correct tail of <i>z</i>
(c)(i)	neither both 5%	B1		neither
		E1		both 5%
(ii)	neither - cannot make a Type II error if	B1		neither
, , ,	mean is 40	E1		No chance of Type II error
(iii)	(a), smaller sample	B1		(a)
		E1	6	Smaller sample
			17	

Question	Solution	Marks	Total	Comments
Number				
and part				
4(a)(i) (ii)	$\frac{38}{150} = 0.253$	M1		
	$\frac{3}{79} = 0.0380$	M1 A1	3	0.253 (0.253 - 0.254) and
				0.0380 (0.379 - 0.38) or acf
(b)	$6 \times \frac{38}{38} \times \frac{84}{84} \times \frac{28}{28} = 0.162$	B1		6
	150 149 148	M1		method - allow without replacement, or omitted or incorrect 6
		m1		Completely correct method
		A1	4	0.162 (0.162 – 0.163) or acf
(c)(i)	38	M1		
	$\frac{1}{150} \times 0.5 = 0.127$	A1	2	0.127 (0.126 – 0.127) or acf
(ii)	$\frac{38}{38} \times 0.5 + \frac{84}{38} \times 0.25 + \frac{28}{38} \times 0.75 =$	M1		Addition of 3 probabilities
	150 150 150 150	m1		Completely correct method
	0.407	A1	3	0.407 (0.406 - 0.407) or acf
(iii)	$\left(1 - \frac{19}{150}\right)\left(1 - \frac{19}{149}\right) = 0.762$	M1		Reasonable attempt
		m1		Wholly correct method - allow without replacement - allow at least 4
		A1	3	0.762 (0.761 - 0.7625) or acf
			15	

Question	Solution	Marks	Total	Comments
Number				
and part				
5(a)	(See graph on next page)	M1		method
		BI	2	Scales and labels
		AI	3	Reasonably accurate plot
(b)	y = -8.65 + 0.460x	B1		-8.65(-8.648.66)
		B2		$0.460 \ (0.459 - 0.461)$
	x = 20 y = 0.5; x = 320 y = 138.5	M1		method for line
	+ line	A1	5	Accurate line
(c)(i)	A $23 - (-8648) - 04598 \times 78 = -42$	M1		method one residual - candidate's line
	B $78 - (-8648) - 04598 \times 162 = 122$			ignore sign
		m1		Both residuals – consistent signs
		A1	3	-4.2(-4.1, -4.3) and $12.2(12, 12.3)$
			_	
(ii)	mean magnitude = 13.1	m1		Requires previous M only
		A1	2	13.1 (13 , 13.2)
(d)	Equation predicts Bryn will collect £43.	B1		Use of equation to predict Bryn's takings
	about $\pounds 12$ more than actually predicted.	E1		Comparison with mean magnitude of
	Consistent with mean magnitude of			residuals
	residuals. No cause for concern.	E1	3	Completely correct argument- candidate's
				figures
5(e)(i)	Residual is $y_i - a - bx_i$	E1		Expression for residual
	Mean residual is $\overline{y} - a - b\overline{x}$	E1		Expression for mean residual
	Since $\overline{y} = \overline{a} + b\overline{x}$ mean residual = 0	E1	3	Complete explanation
(ii)	Sum of given residuals is 10.6. Hence	M1		method - ignore sign
(11)	residual for Bryn is -10.6	A1	2	-10.6 cao or $(-10.45 - 10.5)$ if line
			2	recalculated.
(iii)	Answer unaffected - Brun's residual still	F1		Comparison of candidate's residual with
	similar to mean magnitude			candidate's mean magnitude
	Similar to mean magnitude	E1	2	Complete answer based on reasonably
				correct figures
	Total		23	
	TOTAL		80	

Graph for Q5 (a)

