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Key to mark scheme

M mark is for method
m mark is dependent on one or more  M marks and is for method
A mark is dependent on M or m mark  and is for accuracy
B mark is independent of M or m marks and is for method and accuracy
E mark is for explanation

or ft or F follow through from previous
incorrect result

CAO correct answer only
AWFW anything which falls within
AWRT anything which rounds to
AG answer given
SC special case
OE or equivalent
A2,1 2 or 1 (or 0) accuracy marks
� x EE Deduct x marks for each error
NMS No method shown
PI Perhaps implied
c Candidate

Abbreviations used in marking

MC � x deducted x marks for miscopy
MR � x  deducted x marks for misread
ISW      ignored subsequent working
BOD                     gave benefit of doubt
WR             work replaced by candidate

Application of mark scheme

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or
partially correct method.
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From Formula Book 
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 Total  5  
2(a) 2 sin 4x cos 3x = sin 7x + sin x  M1A1 2  

   (b) Use of ∫ + )sin7(sin xx dx M1   ft (a) + integration attempt 
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Substitution of limits with exact values 
attempted; 

cao, any exact equivalent form 

 Total  7  
3(a) Attempt to solve aux. eqn.  m2 – 5m = 0 

⇒ m = 0 , 5 
M1  
A1 

  
 

 GS is   y = A + B e5x   B1  3 ft 
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 Substituting these into  xyy 205 =′−′′   M1  2a – 5(2ax + b) = 20x  
 Solving    – 10a = 20   and   2a – 5b = 0 M1   ft sim. eqns. from equating terms 
                          a = – 2 ,  b = – 

5
4  A1 4  

   (c)  GS is   y = A + B e5x  – 2 x2 – 
5
4 x      B1  1 ft (a) and (b) 

 Total  8  
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4(a)  y = sinh2x  ⇒  
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 Total  8  
5(a) Char. Eqn. is  λ2 – 7 λ – 8 = 0  M1A1   

                                             ⇒  λ = – 1 , 8 A1   ft if suitable 
 λ = – 1  ⇒  2x + y = 0  or  y = – 2x  ⇒  

evecs.  α 
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 Either case attempted 
 
Any (non-zero) multiple will do 

 λ = 8  ⇒  – 5x + 2y = 0  or  y = 2
5 x  ⇒  
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(b)(i) (0 , 0) B1 1 Accept “The origin”  or   “ O ”  

     

(ii) y = – 2x   and   y = 2
5 x     

 λ ≠ 1  in either case 
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All 3 correct, any polar form  

(allow final answer with 
2

3π ) 

     
   (c) Argand diagram:  

All points equidistant from O 
 

B1 
  

All on circle, centre O, radius 2 
 Equally spaced around circle B1 2 At  30o, 150o, 270o  
     

   (d) Euler’s Rule or from diagram:   
2(cos θ + i sin θ ) 

 
M1  

  
Any one case ft 

             3  + i ,   – 3  + i ,   – 2 i A1A1 3 Any one correct; all 3 correct 
 Total  11  
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 Total  17  
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Number 
and part 

Solution Marks Total Comments 

8(a)  10s = 3(1 – s2) + 5       
from use of  tanh2 = 1 – sech2  

B1   

                ⇒  3s2 + 10s – 8 = 0 M1A1  Creating a quadratic; correct 
 0 = (3s – 2)(s + 4)   ⇒   s = sech y = 

3
2  M1A1 5 Solving; positive answer only 

     
   (b)(i) x = sech y = yy −+ ee
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 ⇒  x e2y – 2 ey + x = 0 M1A1 

 

Quadratic in  ey  attempt; correct 
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With correct indication of choice of sign 

     
   (ii) x = sech y  and use of implicit diffn. M1   
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 ALTERNATIVE:    
 Using the Chain Rule to differentiate 

 y = ln 
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 Chain Rule used and diffn. of product or 
quotient 

 Substituting  x = 
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 = – 2 (A1) (5)  

 Total  15  
 TOTAL  80  

 




