

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

# GCE

# **Mathematics & Statistics B**

# **Unit MBP6**

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

#### AQA

### Key to mark scheme

| Μ          | mark is for                                         | method                               |
|------------|-----------------------------------------------------|--------------------------------------|
| m          | mark is dependent on one or more M marks and is for | method                               |
| Α          | mark is dependent on M or m mark and is for         | accuracy                             |
| В          | mark is independent of M or m marks and is for      | method and accuracy                  |
| Ε          | mark is for                                         | explanation                          |
| or ft or F |                                                     | follow through from previous         |
|            |                                                     | incorrect result                     |
| CAO        |                                                     | correct answer only                  |
| AWFW       |                                                     | anything which falls within          |
| AWRT       |                                                     | anything which rounds to             |
| AG         |                                                     | answer given                         |
| SC         |                                                     | special case                         |
| OE         |                                                     | or equivalent                        |
| A2,1       |                                                     | 2 or 1 (or 0) accuracy marks         |
| -x EE      |                                                     | Deduct <i>x</i> marks for each error |
| NMS        |                                                     | No method shown                      |
| PI         |                                                     | Perhaps implied                      |
| C          |                                                     | Candidate                            |

### Abbreviations used in marking

| MC - x | deducted x marks for miscopy |
|--------|------------------------------|
| MR - x | deducted x marks for misread |
| ISW    | ignored subsequent working   |
| BOD    | gave benefit of doubt        |
| WR     | work replaced by candidate   |

## Application of mark scheme

| Correct answer without working   | mark as in scheme                     |
|----------------------------------|---------------------------------------|
| Incorrect answer without working | zero marks unless specified otherwise |

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

| Question<br>Number<br>and part | Solution                                                                                                                          | Marks        | Total | Comments                                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------------------------------------------------------------------------------------------------------------------------------|
| 1                              | Attempt to integrate $\frac{1}{x(x-1)} = -\frac{1}{x} + \frac{1}{x-1}$                                                            | M1A1         |       |                                                                                                                              |
|                                | $\int = -\ln x + \ln(x-1)$                                                                                                        | A1√          |       | ft                                                                                                                           |
|                                | I.F. is $\exp\{\text{this}\} = \frac{x-1}{x}$                                                                                     | M1A1         | 5     | Allow verification: mult <sup>g</sup> . by given I.F.<br>and showing<br>LHS = $\frac{d}{dx} \left( \frac{y(x-1)}{x} \right)$ |
|                                | ALTERNATIVE:                                                                                                                      |              |       |                                                                                                                              |
|                                | $\frac{1}{x(x-1)} = \frac{1}{\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2}$                                        | (M1)<br>(A1) |       |                                                                                                                              |
|                                | So $\int = \frac{1}{2 \times \frac{1}{2}} \ln \left  \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right $ | (A1)         |       | From Formula Book                                                                                                            |
|                                | I.F. is $\exp\{\text{this}\} = \frac{x-1}{x}$                                                                                     | (M1)<br>(A1) | 5     |                                                                                                                              |
|                                | Total                                                                                                                             |              | 5     |                                                                                                                              |
| 2(a)                           | $2\sin 4x\cos 3x = \sin 7x + \sin x$                                                                                              | M1A1         | 2     |                                                                                                                              |
| (b)                            | Use of $\int (\sin 7x + \sin x) dx$                                                                                               | M1√          |       | ft (a) + integration attempt                                                                                                 |
|                                | $I = \frac{1}{2} \left[ -\frac{1}{7} \cos 7x - \cos x \right]$                                                                    | A1A1         |       | Ignore the factor $\frac{1}{2}$ until end                                                                                    |
|                                | $= \frac{1}{2} \left[ -\frac{1}{7} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{1}{7} + 1 \right]$                       | M1           |       | A1 A0 if both positive<br>Substitution of limits with exact values<br>attempted;                                             |
|                                | $=\frac{2}{7}\left[2-\sqrt{2}\right]$                                                                                             | A1           | 5     | cao, any exact equivalent form                                                                                               |
|                                | Total                                                                                                                             |              | 7     |                                                                                                                              |
| 3(a)                           | Attempt to solve aux. eqn. $m^2 - 5m = 0$                                                                                         | M1           |       |                                                                                                                              |
|                                | $\Rightarrow m = 0, 5$<br>GS is $y = A + B e^{5x}$                                                                                | A1<br>B1√    | 3     | ft                                                                                                                           |
| (b)                            | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b$ and $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$                                       | B1           |       |                                                                                                                              |
|                                | Substituting these into $y'' - 5y' = 20x$                                                                                         | M1           |       | 2a - 5(2ax + b) = 20x                                                                                                        |
|                                | Solving $-10a = 20$ and $2a - 5b = 0$                                                                                             | M1√          |       | ft sim. eqns. from equating terms                                                                                            |
|                                | $a = -2$ , $b = -\frac{4}{5}$                                                                                                     | A1           | 4     |                                                                                                                              |
| (c)                            | GS is $y = A + B e^{5x} - 2x^2 - \frac{4}{5}x$                                                                                    | B1√          | 1     | ft (a) and (b)                                                                                                               |
|                                | Total                                                                                                                             |              | 8     |                                                                                                                              |

| Question           | Solution                                                                                               | Marks | Total | Comments                        |
|--------------------|--------------------------------------------------------------------------------------------------------|-------|-------|---------------------------------|
| Number<br>and part |                                                                                                        |       |       |                                 |
|                    | dv z z z                                                                                               |       |       |                                 |
| 4(a)               | $y = \sinh^2 x \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \sinh x \cosh x$                           |       |       |                                 |
|                    | $= \sinh 2x$                                                                                           | B1    | 1     |                                 |
| (b)                | $\frac{d^2 y}{dr^2} = 2 \cosh 2x$                                                                      | B1    |       | oe                              |
|                    | $1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 2x = \cosh^2 2x$                     | M1A1  |       |                                 |
|                    |                                                                                                        | WITAI |       |                                 |
|                    | Use of $\kappa = \frac{y''}{(1+(y')^2)^{\frac{3}{2}}} = \frac{2\cosh 2x}{\cosh^3 2x}$                  | M1    |       | Or $\rho = \frac{1}{\kappa}$    |
|                    | $=\frac{2}{\cosh^2 2x}$                                                                                | A1    |       |                                 |
|                    | $= \frac{2}{\frac{1}{2} + \frac{1}{2}\cosh 4x} = \frac{4}{1 + \cosh 4x}$                               | M1A1  | 7     | ag                              |
|                    | Total                                                                                                  |       | 8     |                                 |
| 5(a)               | Char. Eqn. is $\lambda^2 - 7 \lambda - 8 = 0$                                                          | M1A1  |       |                                 |
|                    | $\Rightarrow \lambda = -1, 8$<br>$\lambda = -1 \Rightarrow 2x + y = 0 \text{ or } y = -2x \Rightarrow$ | A1√   |       | ft if suitable                  |
|                    | $\lambda = -1 \implies 2x + y = 0 \text{ or } y = -2x \implies$                                        | M1    |       | Either case attempted           |
|                    | evecs. $\alpha \begin{bmatrix} 1 \\ -2 \end{bmatrix}$                                                  | A1    |       | Any (non-zero) multiple will do |
|                    | $\lambda = 8 \implies -5x + 2y = 0 \text{ or } y = \frac{5}{2}x \implies$                              |       |       |                                 |
|                    | evecs. $\beta \begin{bmatrix} 2\\5 \end{bmatrix}$                                                      | A1    | 6     |                                 |
| (b)(i)             | (0,0)                                                                                                  | B1    | 1     | Accept "The origin" or "O"      |
| (ii)               | $y = -2x$ and $y = \frac{5}{2}x$                                                                       | B1√   |       | ft (a)                          |
|                    | $\lambda \neq 1$ in either case                                                                        | E1    | 2     | oe                              |
|                    | Total                                                                                                  |       | 9     |                                 |

| Question           | Solution                                                                                                                                                                                                                 | Marks       | Total | Comments                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------------------------------------------------------------|
| Number<br>and part |                                                                                                                                                                                                                          |             |       |                                                                           |
| 6(a)               | $mod(8i) = 8$ and $arg(8i) = \frac{\pi}{2}$                                                                                                                                                                              | B1B1        | 2     |                                                                           |
| (b)                | $z^{3} = \left(8, \frac{\pi}{2}\right), \left(8, \frac{5\pi}{2}\right), \left(8, -\frac{3\pi}{2}\right)$                                                                                                                 | B1          |       |                                                                           |
|                    | $z^{3} = \left(8, \frac{\pi}{2}\right), \left(8, \frac{5\pi}{2}\right), \left(8, -\frac{3\pi}{2}\right)$ $\Rightarrow z = \left(2, \frac{\pi}{6}\right), \left(2, \frac{5\pi}{6}\right), \left(2, -\frac{\pi}{2}\right)$ | B1<br>M1    |       | Cube root of mods<br>args ÷ 3                                             |
|                    | $= 2e^{\frac{\pi i}{6}}, 2e^{\frac{5\pi i}{6}}, 2e^{\frac{\pi i}{2}}$                                                                                                                                                    | A1          | 4     | All 3 correct, any polar form (allow final answer with $\frac{3\pi}{2}$ ) |
| (c)                | Argand diagram:<br>All points equidistant from <i>O</i><br>Equally spaced around circle                                                                                                                                  | B1<br>B1    | 2     | All on circle, centre $O$ , radius 2<br>At 30°, 150°, 270°                |
| (d)                | Euler's Rule or from diagram:<br>$2(\cos \theta + i \sin \theta)$<br>$\sqrt{3} + i$ , $-\sqrt{3} + i$ , $-2i$                                                                                                            | M1√<br>A1A1 | 3     | Any one case ft<br>Any one correct; all 3 correct                         |
|                    | Total                                                                                                                                                                                                                    |             | 11    |                                                                           |

| Question           | Solution                                                                                                                 | Marks    | Total | Comments                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------------------------------------------|
| Number<br>and part |                                                                                                                          |          |       |                                                                                                                      |
| 7(a)(i)            | $\sec x + \tan x \equiv \frac{1+t^2}{1-t^2} + \frac{2t}{1-t^2}$                                                          | B1B1     |       | One for each <i>t</i> -identity used                                                                                 |
|                    | $\equiv \frac{(1+t)^2}{(1-t)(1+t)} \equiv \frac{1+t}{1-t}$                                                               | M1A1     | 4     | ag                                                                                                                   |
| (ii)               | $t = \tan \frac{1}{2}x \implies \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2}\sec^2 \frac{1}{2}x$                        | M1       |       | Allow $x = 2 \tan^{-1} t$ and                                                                                        |
|                    | $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{1+t^2} \qquad \text{ag}$                                         | A1       | 2     | $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{1+t^2}$ from Formula Book                                                |
| (b)                | $\int \sec x  dx = \int \frac{1+t^2}{1-t^2} \times \frac{2}{1+t^2}  dt =$                                                | M1       |       |                                                                                                                      |
|                    | $\int \frac{2}{1-t^2} \mathrm{d}t$                                                                                       | A1       |       |                                                                                                                      |
|                    | $= \ln \left  \left( \frac{1+t}{1-t} \right) \right  + C$                                                                | M1<br>A1 |       | Either from Formula Book or via P.F.s:<br>$\int \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \ln(1-t) + \ln(1+t)$ |
|                    | $= \ln  \sec x + \tan x  + C$                                                                                            | A1       | 5     | ag                                                                                                                   |
| (c)                | $y = \ln(\sec x) \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \tan x$                                                   | B1       |       |                                                                                                                      |
|                    | and $1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \sec^2 x$                                                      | B1       |       |                                                                                                                      |
|                    | $L = \int \sec x  \mathrm{d}x$                                                                                           | M1A1     |       |                                                                                                                      |
|                    | $= \ln   \sec x + \tan x  $                                                                                              | A1       |       |                                                                                                                      |
|                    | $= \ln\left(2 + \sqrt{3}\right) - \ln\left(\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right)$                               |          |       |                                                                                                                      |
|                    | $= \ln\left(\frac{2+\sqrt{3}}{\sqrt{3}}\right) = \ln\left(1+r\right) \text{ where } r = \left(\frac{2}{\sqrt{3}}\right)$ | A1       | 6     |                                                                                                                      |
|                    | Total                                                                                                                    |          | 17    |                                                                                                                      |

| Question         | Solution                                                                                                                                     | Marks        | Total | Comments                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|---------------------------------------------------|
| Number           |                                                                                                                                              |              |       |                                                   |
| and part<br>8(a) | $10s = 3(1 - s^2) + 5$                                                                                                                       | B1           |       |                                                   |
| 0( <i>a</i> )    | from use of $tanh^2 = 1 - sech^2$                                                                                                            | DI           |       |                                                   |
|                  | $\implies 3s^2 + 10s - 8 = 0$                                                                                                                | M1A1         |       | Creating a quadratic; correct                     |
|                  | $0 = (3s - 2)(s + 4) \implies s = \operatorname{sech} y = \frac{2}{3}$                                                                       | M1A1         | 5     | Solving; positive answer only                     |
| (b)(i)           | $x = \operatorname{sech} y = \frac{2}{e^{y} + e^{-y}}$                                                                                       |              |       |                                                   |
|                  | $e^{y} + e^{y}$<br>$\Rightarrow r e^{2y} - 2 e^{y} + r = 0$                                                                                  | M1A1         |       | Quadratic in $e^{v}$ attempt; correct             |
|                  | $\Rightarrow x e^{2y} - 2 e^{y} + x = 0$<br>$e^{y} = \frac{2 \pm \sqrt{4 - 4x^{2}}}{2x} = \frac{1}{x} \left( 1 \pm \sqrt{1 - x^{2}} \right)$ | WIAI         |       | Quadratie in e attempt, concer                    |
|                  |                                                                                                                                              | M1           |       |                                                   |
|                  | $y = \ln \left\{ \frac{1 \pm \sqrt{1 - x^2}}{x} \right\}$                                                                                    | ml           |       |                                                   |
|                  | $= \ln \left\{ \frac{1 + \sqrt{1 - x^2}}{x} \right\} \text{ as } y \ge 0$                                                                    | A1           | 5     | With correct indication of choice of sign         |
| (ii)             | $x = \operatorname{sech} y$ and use of implicit diffn.                                                                                       | M1           |       |                                                   |
|                  | $\Rightarrow -\operatorname{sech} y \tanh y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$                                                             | A1           |       |                                                   |
|                  | $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x\sqrt{1-x^2}}$                                                                     | A1√          |       | ft sign                                           |
|                  |                                                                                                                                              | M1           |       | ft sign                                           |
|                  | Substituting $x = \frac{1}{\sqrt{2}} \Rightarrow \frac{dy}{dx} = -2$                                                                         | A1           | 5     | cao (except ft + 2)                               |
|                  | <b>ALTERNATIVE:</b><br>Using the Chain Rule to differentiate                                                                                 |              |       |                                                   |
|                  |                                                                                                                                              |              |       |                                                   |
|                  | $y = \ln \left\{ \frac{1 + \sqrt{1 - x^2}}{x} \right\}$                                                                                      |              |       |                                                   |
|                  | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{1+\sqrt{1-x^2}} \times$                                                                          | (M1)<br>(A1) |       |                                                   |
|                  |                                                                                                                                              | (M1)         |       | Chain Rule used and diffn. of product or quotient |
|                  | $\frac{x \cdot \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} - 2x - (1 + \sqrt{1 - x^2})}{1 + \sqrt{1 - x^2}}$                                        | (A1)         |       | quotion                                           |
|                  | Substituting $x = \frac{1}{\sqrt{2}} \implies \frac{dy}{dx} = -2$                                                                            | (A1)         | (5)   |                                                   |
|                  | Total                                                                                                                                        |              | 15    |                                                   |
|                  | TOTAL                                                                                                                                        |              | 80    |                                                   |