 OUALIFICATIONS

GCE

Mathematics \& Statistics B

Unit MBP5

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& h=0.5 \\
\& \text { Integral }=\frac{h}{2}\{\ldots\} \\
\& \{\ldots\}=\left[\frac{1}{4}+\frac{1}{30}+2\left(\frac{8}{51}+\frac{1}{11}+\frac{8}{149}\right)\right] \\
\& \text { Integral }=0.222 \\
\& \text { sc (for } 5 \text { strips) } h=0.4
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
At least 3 terms correct 5 terms, at least 4 correct \\
cao must be 0.222 \\
B0 \\
M1 at least 4 terms correct A1 6 terms at least 5 correct A1cao
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline 2 \& \[
\begin{aligned}
\& 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2} \\
\& 3\left(y^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2} \\
\& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x^{2}}{y^{2}+1}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
2 terms correct \\
ag cso
\end{tabular} \\
\hline \& Total \& \& 3 \& \\
\hline \begin{tabular}{l}
3(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& \left(1+4 x^{2}\right)^{\frac{1}{2}} \approx 1+\left(\frac{1}{2}\right)\left(4 x^{2}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(4 x^{2}\right)^{2}}{2!} \\
\& \ldots \ldots \ldots=1+2 x^{2}-2 x^{4}+\ldots \\
\& |x|<\frac{1}{2} \\
\& \text { Integral } \approx \int_{0}^{\frac{1}{4}} 1+2 x^{2}-2 x^{4} \mathrm{~d} x \\
\& =\left[x+\frac{2}{3} x^{3}-\frac{2}{5} x^{5}\right]_{0}^{\frac{1}{4}} \\
\& =\frac{1}{4}+\frac{1}{96}-\frac{1}{2560}-0=\frac{1997}{7680}=0.2600 \\
\& {[0.25+0.0104(16 . .)-0.00039(06 . .)]}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A2,1 \\
B2,1 \\
M1 \\
A1J \\
A1
\end{tabular} \& 3
2
2

3 \& | Valid attempt to at least 2 terms |
| :--- |
| A1 for correct expansion and at least 2 of 3 terms tidied correctly |
| B1 for $\left\|4 x^{2}\right\|<1$ or better |
| Integrating 3 terms at least two integrated correctly ft on (a) if equivalent difficulty |
| Accept 0.26 provided clear evidence with no error |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Question Number and part	Solution	Marks	Total	Comments
5(a)	$y=1$	B1	1	Must be the equation
(b)(i)	$(y-1) x^{2}+3 y x+3 y \quad\{=0\}$	M1		Attempt to form quadratic in x
		A1		Correct quadratic in x
	$\Delta=(3 y)^{2}-4(y-1)(3 y)$	m1		Considers $b^{2}-4 a c$
 $-3 y^{2}+12 y$	A1		
 $-3 y(y-4)$	m1		Attempt to factorise or solve
	For real $x, \Delta \geq 0 \Rightarrow 0 \leq y \leq 4$	A1	6	ag cso
(ii)	$y=4 \Rightarrow 3 x^{2}+12 x+12=0$	M1		Substitute $y=4$ to form a 'valid' quadratic in x. (PI)
	$\Rightarrow x=-2$, turning point $(-2,4)$	A1		If not using 'hence' then ($-2,4$) is B1 max.
	$\left\{y=0 \Rightarrow-x^{2}=0 \Rightarrow x=0\right\}$			
	Turning point (0,0)	B1	3	
(c)	$\bigcap \begin{aligned} & y \uparrow . \\ & 4- \end{aligned}$	B3,2,1	3	B1 for shape
				B1 for origin as only point where graph meets the axes
				B1 for correct behaviour at the 'endpoints'
	Total		13	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

