

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBP5

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
C		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
Number				
and part	h = 0.5	B1		
1		DI		
	Integral = $\frac{h}{2} \{\dots\}$			
	$() = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}$	M1		At least 3 terms correct
	$\{\ldots\} = \left[\frac{1}{4} + \frac{1}{30} + 2\left(\frac{8}{51} + \frac{1}{11} + \frac{8}{149}\right)\right]$	A1		5 terms, at least 4 correct
	Integral = 0.222	A1	4	cao must be 0.222
	sc (for 5 strips) $h = 0.4$			В0
	Sec (101 5 surps) $n = 0.4$			M1 at least 4 terms correct
				A1 6 terms at least 5 correct
				Alcao
	Total	N(1	4	2.4
2	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	M1 A1		2 terms correct
	$3y^{2} \frac{dy}{dx} + 3\frac{dy}{dx} = 3x^{2}$ $3(y^{2} + 1)\frac{dy}{dx} = 3x^{2}$ $\Rightarrow \frac{dy}{dx} = \frac{x^{2}}{y^{2} + 1}$			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{y^2 + 1}$	A1	3	ag cso
	Total		3	
3(a)	$(1+4x^2)^{\frac{1}{2}} \approx 1 + (\frac{1}{2})(4x^2) + \frac{(\frac{1}{2})(\frac{1}{2}-1)(4x^2)^2}{2!}$ = 1 + 2x ² - 2x ⁴ +	M1		Valid attempt to at least 2 terms
	$\dots = 1 + 2x^2 - 2x^4 + \dots$	A2,1	3	A1 for correct expansion and at least 2 of 3 terms tidied correctly
(b)	$\left x \right < \frac{1}{2}$	B2,1	2	B1 for $ 4x^2 < 1$ or better
(c)	Integral $\approx \int_{1}^{\frac{1}{4}} 1 + 2x^2 - 2x^4 dx$			
	0			
	$= \left[x + \frac{2}{3}x^3 - \frac{2}{5}x^5 \right]_0^{\frac{1}{4}}$	M1		Integrating 3 terms at least two integrated correctly
		A1√		ft on (a) if equivalent difficulty
	$= \frac{1}{4} + \frac{1}{96} - \frac{1}{2560} - 0 = \frac{1997}{7680} = 0.2600$	A1	3	Accept 0.26 provided clear evidence with
	[0.25 + 0.0104(16) - 0.00039(06)]			no error
	Total		8	

Question	Solution	Marks	Total	Comments
Number				
and part				
4(a)	$R \cos \alpha = 12$ or $R \sin \alpha = 16$	M1		Accept seen
	or $\tan \alpha = \frac{16}{12}$			
	$R^2 = 12^2 + 16^2$	M1		Or use two of the three results in line1.
	$\Rightarrow 20 \sin(2x+0.927)$	A1	3	For α accept 0.927;0.295 π , 53.1° or better. <i>R</i> must be 20.
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 22x - 6\cos 2x + 8\sin 2x$	M1 A1		Sign/constant errors only oe
	$\frac{d^2 y}{dx^2} = 22 + 12\sin 2x + 16\cos 2x$	A1√	3	oe ft on earlier slip (answer only gets 3/3)
(ii)	For pt. of inflection need $\frac{d^2 y}{dx^2} = 0$ $22 + 12 \sin 2x + 16 \cos 2x = 0$	M1		Equates their $\frac{d^2 y}{dx^2}$ to 0
	Need $22 + 20 \sin (2x + 0.927) = 0$; not possible since $\sin x \ge -1$ so no point of inflection	E1	2	ag adequate explanation based on sin $(2x+\alpha) = k$ where $ k > 1$
	Total		8	

Question	Solution	Marks	Total	Comments
Number and part				
5(a)	<i>y</i> = 1	B1	1	Must be the equation
(b)(i)	$(y-1)x^2 + 3yx + 3y $ {=0}	M1 A1		Attempt to form quadratic in x Correct quadratic in x
	$\Delta = (3y)^2 - 4(y-1)(3y)$	m1		Considers b^2 –4 <i>ac</i>
	$\dots -3y^2 + 12y$	A1		
	3 <i>y</i> (<i>y</i> -4)	m1		Attempt to factorise or solve
	For real $x, \Delta \ge 0 \Longrightarrow 0 \le y \le 4$	A1	6	ag cso
(ii)	$y = 4 \Longrightarrow 3x^2 + 12x + 12 = 0$	M1		Substitute $y = 4$ to form a 'valid' quadratic in x. (PI)
	\Rightarrow x = -2, turning point (-2, 4)	A1		If not using 'hence' then $(-2, 4)$ is B1 max.
	$\{y = 0 \Longrightarrow -x^2 = 0 \Longrightarrow x = 0\}$			
	Turning point (0,0)	B1	3	
(c)	$\bigwedge 4$	B3,2,1	3	B1 for shape
				B1 for origin as only point where graph meets the axes
				B1 for correct behaviour at the 'end- points'
	Total		13	

Question	Solution	Marks	Total	Comments
Number				
and part 6(a)(i)	dx dv	M1		Attempts both (PI)
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 8\sin t \cos t \ , \ \frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin t$	A1		At least one correct
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}t}{\mathrm{d}t} = \frac{-2\sin t}{\mathrm{d}t} = \frac{-1}{\mathrm{d}t}$	A1	3	Any correct function of <i>t</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-2\sin t}{8\sin t\cos t} = \frac{-1}{4\cos t}$		5	Any concertance on or r
(ii)				
	At P, $t = \frac{\pi}{3}$	B1	1	Accept 3sf
(iii)	$4\cos{\frac{\pi}{2}}$			
	Gradient of normal at $P = \frac{4\cos\frac{\pi}{3}}{1}$	M1		Valid use of $mm' = -1$ to reach a constant gradient for the normal
	Normal at P has equation			
	$y-1=4\cos\frac{\pi}{3}(x-3)$	m1		Dependent on previous M
	$\Rightarrow y = 2x - 5$	A1	3	ag cso
(b)(i)	'Required area' = $\int y \frac{dx}{dt} dt$	M1		Need attempt to write integrand in terms of <i>t</i> . (ignore limits at this stage)
	$\dots = \int 2\cos t (8\sin t\cos t) \mathrm{d}t$	A1√		ft cand's $\frac{dx}{dt}$ if seen in (a)
	At P, $t = \frac{\pi}{3}$; at 'end-pt' $t = \frac{\pi}{2}$			
	So required area is given by			
	$16\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^2 t \sin t \mathrm{d}t$	A1	3	ag cso
(ii)	3			du
(11)	$u = \cos t \Rightarrow \mathrm{d}u = -\sin t \mathrm{d}t$	B1		Accept $\frac{\mathrm{d}u}{\mathrm{d}t} = -\sin t$ oe (PI)
		N <i>I</i> 1		
	$\ldots = \int_{\frac{1}{2}}^{0} u^2 (-\mathrm{d}u)$	M1		All <i>x</i> 's and d <i>x</i> 'eliminated' and limits changed oe
	$\dots = \frac{1}{24}$	A1	3	Condone inclusion of '16' if working with 16 times given integral
(iii)	Area of triangle $NPQ = \frac{1}{4}$	B1		
	Required area = $\frac{1}{4} + 16 \times \frac{1}{24} = \frac{11}{12}$	B1√	2	ft on 1 slip
	Total		15	

Question	Solution	Marks	Total	Comments
number				
and part				
7(a)	$ \begin{pmatrix} 1\\3\\2 \end{pmatrix} \cdot \begin{pmatrix} 0\\2\\1 \end{pmatrix} = 0 + 6 + 2 = 8 $	B1	1	
(b)	$\begin{pmatrix} 4+t\\5+3t\\3+2t \end{pmatrix} \cdot \begin{pmatrix} 0\\2\\1 \end{pmatrix} = 5$	M1		Elimination of r between l and Π (scalars on both sides)
	10 + 6t + 3 + 2t = 5	A1		
	$\Rightarrow t = -1 \Rightarrow \text{position vector of pt. of}$ intersection is $(3\mathbf{i} + 2\mathbf{j} + \mathbf{k})$	A1	3	Accept any correct form
(c)(i)	Magnitude of vectors are $\sqrt{14}$ and $\sqrt{5}$ 8 = $\sqrt{14} \times \sqrt{5} \cos \theta$	B1 M1		Award for one correct Use of dot product (ft on earlier values)
	$\cos\theta = \frac{8}{\sqrt{70}} = \frac{8\sqrt{70}}{70} = \frac{4\sqrt{70}}{35}$	A1	3	cso condone answer left as $\cos \theta = \frac{4\sqrt{70}}{35}$
	$\Rightarrow \theta = \cos^{-1}\left(\frac{4\sqrt{70}}{35}\right)$			35 ag
(ii)	Angle between <i>l</i> and $\Pi = 90^{\circ} - \theta$	M1		
	=72.967=73°	A1	2	awrt 73°
	Total		9	
	TOTAL		60	