

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBP2

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
and part			marks	
1	$\int (e^{2x} + 4) dx = \frac{1}{2}e^{2x} + 4x$	M1 A1		Either $0.5 e^{2x}$ or $k e^{2x} + 4x, k \neq 0$
	$\int_{0}^{1} \left(e^{2x} + 4 \right) dx = \frac{1}{2}e^{2} + 4 - \frac{1}{2}$	M1		F(1) - F(0)
	$=\frac{1}{2}\left(e^2+7\right)$	A1	4	ag cso
	Total		4	
2(a)(i)	Area of sector $=\frac{1}{2}r^2\theta$	M1		For $\frac{1}{2}r^2\theta$
	$= 0.5 \times 9\theta = 4.5\theta \ (\mathrm{cm}^2)$	A1	2	
(ii)	Area of triangle = $\frac{1}{2}AB \times AC\sin\theta$	M1		$\frac{1}{2}AB \times AC\sin\theta$
	$\dots = \frac{1}{2} 3 \times 4 \sin \theta = 6 \sin \theta \ (\text{cm}^2)$	A1	2	
(b)	{For small θ ,} $\sin \theta \approx \theta$	M1		Stated or used
	Shaded area $\approx 6\theta - 4.5\theta = 1.5\theta \ (\text{cm}^2)$	A1	2	ag cso
	Total		6	
3(a)	14 (m ³)	B1		$\frac{\mathrm{d}V}{\mathrm{d}t} = k\mathrm{e}^{-\frac{t}{12}}$
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{6}{12} \mathrm{e}^{-\frac{t}{12}}$	M1		isw wrong evaluation Accept equivalent statements ft (only ft if A0)
	$t = 12, V'(t) = -0.5 e^{-1} (= -0.1839)$	A1		
	negative sign \Rightarrow Volume decreasing	E1√		
(c)	$11 = 8 + 6e^{-\frac{t}{12}}$	M1		Rearrangement or $\ln 3 = \ln 6 + \ln e^{-\frac{t}{12}}$
	$e^{-\frac{t}{12}} = \frac{11-8}{6}$	m1		To the form $-\frac{t}{12} = \ln k$
	Total		8	

Question	Solution	Marks	Total	Comments
and part			marks	
4	$\tan x = -\sqrt{3}$			
	$\tan^{-1}\sqrt{3} = \frac{\pi}{3}$	M1		Inverse tangent of either $\sqrt{3}$ or $-\sqrt{3}$ attempted; can be implied by eg a correct 2^{nd} or 4^{th} quadrant angle
	$[x] = \pi - \frac{\pi}{3}$	ml		Angle $(\pi - \tan^{-1}\sqrt{3})$ oe in 2 nd quadrant accept different forms e.g. degrees, decimals (could be negative)
	$[x] = 2\pi - \frac{\pi}{3}$	m1		Angle $(2\pi - \tan^{-1}\sqrt{3})$ oe in 4 th quadrant accept different forms e.g. degrees, decimals (could be negative if different from principal value)
	$x = \frac{2\pi}{3}$ and $x = \frac{5\pi}{3}$	A1	4	cao as the only two solutions in the interval $0 < x < 2\pi$. Ignore 'extras' outside this interval.
				sc MR solving $\tan x = \sqrt{3}$ gets max 2/4
				i.e. 1 st M1 and an A1 for both $\frac{\pi}{3}$ and $\frac{4\pi}{3}$
	Total		4	
5(a)	\searrow y	M1		V-shape
	4	A1		only in both 1 st and 2 nd quadrants
		A1		vertex at (2,0)
	O = 2 x	B1	4	Graph meets <i>y</i> -axis at 4 only
(b)(i)	2x - 4 = x; or $2x - 4 = -x$; or $3x^2 - 16x + 16 = 0$;	M1		M1 for any one of the three oe
	$\Rightarrow x = 4$	A1		(If no method seen give B3 for both
	$x = \frac{4}{3}$	A1	3	answer)
(ii)	$x < \frac{4}{3}; x > 4$	B2,1√	2	ft on (i); penalise non-strict inequality only once
(c)	<i>k</i> = 2	M1A1	2	M1 e.g. (i) translates graph k units vertically (ii) solves $x = 2x - 4 + k$ and x = -2x + 4 + k simultaneously to a single equation in k. $(12 - 3k = 4 + k)$
	Total		11	

Question	Solution	Marks	Total	Comments
number			marks	
6(a)(i)	$2 2^{2} 2^{2} 2^{2}$	B1	1	If used a look for evidence of $a = 2$ later
0(u)(l)	2, 2r, 2r, 2r	DI	1	
(ii)	$a + ar + ar^2 = ar^3 = \frac{15}{4}$	M1		$3.75 = \frac{a(1-r^4)}{1-r}$ gets M1
	either $4(2+2^r+2r^2+2r^3)=15$			
	or $2r^3 + 2r^2 + 2r - 1.75 = 0$ oe	A1		'Quartic' form needs to be simplified
	$8r^3 + 8r^2 + 8r - 7 = 0$	A1	3	ag cso
(b)(1)	p(0.5)=1+2+4-7	M1		Finds value for $p(0.5)$
	$\dots = 0$ so $(2r-1)$ is a factor of $p(r)$	A1	2	
(;;)	(-)(- 2)			
(11)	$(2r-1)(4r^2+7)$	M1		Valid start/end division
	$(2r-1)(4r^2+6r+7)$	A1	2	
(iii)	$p(r) = 0 \Longrightarrow 2r - 1 = 0 \text{ or } 4r^2 + 6r + 7 = 0$			
	Since $6^2 < 4(4)(7)$	M1		Valid consideration of Δ
	$4r^2 + 6r + 7 = 0$ has no real roots			
	$\{so p(r) = 0 has only 1 real solution\}$	A1	2	No numerical errors
(-)				
(C)	r = 0.5	B1		Can be awarded if seen in (iii)
	$S_{\infty} = \frac{a}{1-r};=4$	M1		
	1-7	A1	3	
	Total		13	

Question number	Solution	Marks	Total marks	Comments
and part	2 (
7(a)(i)	$y'(x) = \frac{3}{4}x^2 - \frac{6}{7}$	M1	2	M1 at least 1 term correct
	(2)		2	attempts to find $y'(2)$
(ii)	$Y\left(\frac{1}{3}\right)$	M1		attempts to find $y\left(\frac{1}{3}\right)$
	$\dots = \frac{1}{3} - 9 = -8\frac{2}{3}$	A1	2	ag cso
(b)(i)	3 . 6			
	$\frac{3}{4}x^2 - \frac{3}{x} = 0$	M1		puts their $y'(x) = 0$
	$3x^3 = 24$	m1		to a single power of x
	x = 2	A1	3	Must only be the one value
(ii)	$y''(x) = \frac{3}{2}x + \frac{6}{2}$	M1	•	Clear differentiation of $y'(x)$
	$2 x^2$	AI√	2	ft on equivalent forms of $y'(x)$
<i></i>				
(111)	$y''(2) = 3 + \frac{3}{4} = 4.5$	Al		ag cso
	$\{y''()>0 \text{ so st.pt is a }\}$ minimum	B1	2	
	Gradient of $PQ = y_Q - y_P$	M1		$v_{o} - v_{p}$ numerical
	Gradient of $PQ = \frac{8-4}{8-4}$	1011		y y y p inmitter our
	$\dots = \frac{129 - 6\ln 8 - (17 - 6\ln 4)}{12}$			
	8-4			
	$129 - 17 - 6 \ln \frac{8}{4}$	m1		$\ln 8 - \ln 4 = \ln \frac{8}{4}$
	·····= <u> </u>			or both $\ln 4 = 2 \ln 2$ and $\ln 8 = 3 \ln 2$
	$\dots = 28 - \frac{3}{2} \ln 2$	A1	3	Accept $a = 28, b = -1.5$
	Total		14	
	TOTAL		60	