

GCE

Mathematics \& Statistics B

Unit MBP2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x} \mathbf{E E}$		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Question number and part | Solution | Marks | Total marks | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \int\left(\mathrm{e}^{2 x}+4\right) \mathrm{d} x \end{aligned}=\frac{1}{2} \mathrm{e}^{2 x}+4 x .\left\{\begin{aligned} \int_{0}^{1}\left(\mathrm{e}^{2 x}+4\right) \mathrm{d} x & =\frac{1}{2} \mathrm{e}^{2}+4-\frac{1}{2} \\ & =\frac{1}{2}\left(\mathrm{e}^{2}+7\right) \end{aligned}\right.$ | M1
 A1
 M1
 A1 | 4 | Either $0.5 \mathrm{e}^{2 x}$ or $k \mathrm{e}^{2 x}+4 x, k \neq 0$ $F(1)-F(0)$
 ag cso |
| | Total | | 4 | |
| 2(a)(i) | $\begin{aligned} \text { Area of sector } & =\frac{1}{2} r^{2} \theta \\ & =0.5 \times 9 \theta=4.5 \theta\left(\mathrm{~cm}^{2}\right) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | $\text { For } \frac{1}{2} r^{2} \theta$ |
| (ii) | $\text { Area of triangle }=\frac{1}{2} A B \times A C \sin \theta$ | M1 | | $\frac{1}{2} A B \times A C \sin \theta$ |
| (b) | $\begin{aligned} & \ldots=\frac{1}{2} 3 \times 4 \sin \theta=6 \sin \theta\left(\mathrm{~cm}^{2}\right) \\ & \{\text { For small } \theta,\} \sin \theta \approx \theta \\ & \text { Shaded area } \approx 6 \theta-4.5 \theta=1.5 \theta\left(\mathrm{~cm}^{2}\right) \end{aligned}$ | A1
 M1
 A1 | 2 2 | Stated or used ag cso |
| | Total | | 6 | |
| 3(a) | | B1 | | $\frac{\mathrm{d} V}{\mathrm{~d} t}=k \mathrm{e}^{-\frac{t}{12}}$ |
| (b) | $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{6}{12} \mathrm{e}^{-\frac{t}{12}}$ | M1 | | isw wrong evaluation
 Accept equivalent statements ft (only ft if A0) |
| | $t=12, V^{\prime}(t)=-0.5 \mathrm{e}^{-1}(=-0.1839 .$. | A1 | | |
| | negative sign \Rightarrow Volume decreasing | E1 \checkmark | | |
| (c) | $\begin{aligned} & 11=8+6 \mathrm{e}^{-\frac{t}{12}} \\ & \mathrm{e}^{-\frac{t}{12}}=\frac{11-8}{6} \end{aligned}$ | M1
 m1 | | Rearrangement or $\ln 3=\ln 6+\ln \mathrm{e}^{-\frac{t}{12}}$ To the form $-\frac{t}{12}=\ln k$ |
| | Total | | 8 | |

Question number and part	Solution	Marks	Total marks	Comments
6(a)(i)	$2,2 r, 2 r^{2}, 2 r^{3}$	B1	1	If used a look for evidence of $a=2$ later.
(ii)	$\begin{aligned} & a+a r+a r^{2}=a r^{3}=\frac{15}{4} \\ & \text { either } 4\left(2+2^{r}+2 r^{2}+2 r^{3}\right)=15 \end{aligned}$	M1		$3.75=\frac{a\left(1-r^{4}\right)}{1-r} \text { gets M1 }$
	or $2 r^{3}+2 r^{2}+2 r-1.75=0$ oe $8 r^{3}+8 r^{2}+8 r-7=0$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	'Quartic' form needs to be simplified ag cso
(b)(i)	$\begin{aligned} & \mathrm{p}(0.5)=1+2+4-7 \\ & \ldots=0 \text { so }(2 r-1) \text { is a factor of } \mathrm{p}(r) \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	2	Finds value for $\mathrm{p}(0.5)$
(ii)	$\begin{aligned} & (2 r-1)\left(4 r^{2} \ldots \ldots+7\right) \\ & (2 r-1)\left(4 r^{2}+6 r+7\right) \\ & \mathrm{p}(r)=0 \Rightarrow 2 r-1=0 \text { or } 4 r^{2}+6 r+7=0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Valid start/end division
(iii)	Since $6^{2}<4(4)(7)$	M1		Valid consideration of Δ
	$\begin{aligned} & 4 r^{2}+6 r+7=0 \text { has no real roots } \\ & \{\text { so } \mathrm{p}(r)=0 \text { has only } 1 \text { real solution }\} \end{aligned}$	A1	2	No numerical errors
(c)	$r=0.5$	B1		Can be awarded if seen in (iii)
	$S_{\infty}=\frac{a}{1-r} ;=4$	M1		
		A1	3	
	Total		13	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

