

OUALIFICATIONS

GCE

Mathematics \& Statistics B

Unit MBP1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
Vorft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-x$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b) \\
(c)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 7+9 d \\
\& 7+9 d=43 \quad d=4
\end{aligned}
\] \\
\(S_{n}=\frac{1}{2} n(2 a+(n-1) d)\) formula attempted
\[
=25(14+196)
\]
\[
=5250
\]
\[
7+(k-1) d>1000
\]
\[
\Rightarrow 4 k>997
\] \\
(Since \(k\) is integer) \\
\(k=250\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \sqrt{2} \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 }
\end{gathered}
\] \& \[
3
\] \& \begin{tabular}{l}
Condone \(7+10 d\), or attempt to consider
\[
\frac{43-7}{9}\{\text { or } 10\}
\] \\
Condone one slip using \(n\) or 50 \\
ft their \(49 d(\mathrm{eg} 25 \times 190.4=4760)\) \\
Condone \(=\) instead of \(>\) ag be convinced
\end{tabular} \\
\hline \& Total \& \& 8 \& \\
\hline \begin{tabular}{l}
2(a)(i) \\
(ii) (b)(i) \\
(ii) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Gradient \(A B=-1\)
\[
\begin{aligned}
y-2= \& -(x+1) \\
\& \Rightarrow \text { equation of } A B \text { is } x+y=1 \\
\& x+3 y=7 \quad \Rightarrow \quad y=\ldots
\end{aligned}
\] \\
Gradient of \(x+3 y=7\) is \(-\frac{1}{3}\) \\
gradient \(B C=3\) \\
Equation of \(B C\) is \(y=3(x-5)\) \\
Solving \(\quad x+y=1 \&\) candidate's \(B C\)
\[
\begin{aligned}
\& 4 x-15=1 \text { etc } \\
\& \Rightarrow B(4,-3)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
B1 \(\checkmark\) \\
M1 \\
M1 \\
A1
\end{tabular} \& 2 1 \& \begin{tabular}{l}
Accept \(\frac{4}{-4}\) etc if \(\frac{\Delta y}{\Delta x}\) used \\
Withhold if incorrect formula used or \(y=-x+c\) and use of \((-1,2)\) to find \(c\) ag \\
Making \(y\) the subject to get gradient or awareness that \(m_{1} \times m_{2}=-1\) \\
Correct or ft their \(B C\) gradient \\
Eliminating \(x\) or \(y\)
\end{tabular} \\
\hline \& Total \& \& 8 \& \\
\hline 3(a)

(b)

(c) \& \begin{tabular}{l}

Reflection in $y=k$

in $y=1$

 \&

M1

A1

M1

A1

M1

A1
\end{tabular} \& 2

2

2 \& | Idea of reflection in y-axis |
| :--- |
| Accurate for $-5 \leq x \leq 5$ |
| General shape or 2 sections correct |
| Correct graph with $y=4$ for $x>4$ |
| Accept reflection and translation in y-direction Accept correct composite transformation e.g. reflect in x-axis followed by translation of 2 units in y-direction |

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments

\hline 4(a)
(b)

(c)
(d)

(e) \& \begin{tabular}{l}
$$
g(-1)=6
$$
$$
g(2)=9
$$

Range
$$
5 \leq \mathrm{g}(x) \leq 9
$$

g^{-1} does NOT exist

Two values of x give same value of y
$$
\begin{aligned}
\operatorname{gg}(x) & =\left(x^{2}+5\right)^{2}+5 \\
& =x^{4}+10 x^{2}+30
\end{aligned}
$$

 \&

B1

B1

M1

A1

M1

A1

A1

B1

E1

M1

A1

 \&

$$
2
$$

2

 \&

Parabola (part or whole) ONLY drawn for $-1 \leq x \leq 2$

Either 5 or 9

One inequality correct All correct and $\mathrm{g}(x)$ or y (condone $\mathrm{f}(x)$ but not x)

Many-one (not one-one ,etc)

Must be correct expression

$$
p=10, \quad q=30
$$

\end{tabular}

\hline \& Total \& \& 11 \&

\hline | $5(\mathrm{a})(\mathrm{i})$ |
| :--- |
| (ii) |
| (b)(i) |
| (ii) | \& | $\begin{aligned} & x^{2}+(3-7) x+5-49=0 \\ & \Rightarrow x^{2}-4 x-44=0 \end{aligned}$ |
| :--- |
| Use of quadratic equation formula or attempt to complete square $\Rightarrow(x=) 2 \pm 4 \sqrt{3}$ $\text { Discriminant } \quad b^{2}-4 a c$ $(3-k)^{2}-4\left(5-k^{2}\right)$ $\Rightarrow 5 k^{2}-6 k-11=0$ $\begin{aligned} (5 k-11)(k+1) & =0 \\ & \Rightarrow k=-1, \quad \frac{11}{5} \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 | \& 1

2
2
3

2 \& | Be convinced - no missing brackets etc |
| :--- |
| ag \quad Must have $=0$ |
| Condone one slip $\frac{4 \pm \sqrt{192}}{2}$ |
| Used - must involve k $9-6 k+k^{2}-20+4 k^{2}$ |
| ag must use " $=0$ " condition |
| Attempt to solve or factorise |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Question Number and part	Solution	Marks	Total	Comments
(b)	$\begin{aligned} & \text { Awareness that } \frac{\sin \theta}{\cos \theta}=\tan \theta \\ & \tan 2 x=0.8 \\ & \tan ^{-1} \quad(\text { candidate's } k \text {) } \\ & 2 x=38.6598 . .^{\circ} \quad \stackrel{2 x=38.7^{\circ}}{\Rightarrow x=19.3^{\circ}} \\ & 2 x=218.6598 . .^{\circ} \Rightarrow x=109.3^{\circ} \end{aligned}$	M1 A1 M1 A1 A1 $\sqrt{ }$ $\mathrm{A} 1 \checkmark$	4	Generous Correctly derived - not fudged $38.6598 \ldots .^{\circ} 0.6747 \text { rads }$ condone 38.6° or better 19.3299....ㅇ ft half their $\tan ^{-1} k$ accept 0.337 rads Their previous value $+90^{\circ}$ Must be degrees for final mark Lose final A1 for extra solutions in interval
	Total		6	
7(a)(i)	$\frac{d y}{d x}=2 x$	B1		
	$-\frac{162}{x^{3}}$	M1	3	Power x^{-3}
	$2 x-\frac{162}{x^{3}}=0$	M1 A1	2	Putting candidate's $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ M1 only for verification $x= \pm 3$
(iii)	$x^{2}=9 \quad$ or $x=\sqrt[4]{81}$	M1		Or $x=3$ as only value given
	$x= \pm 3$	A1	2	
(iv)	$y=18$	B1	1	No need to show both equal 18 B0 if 2 different y values given
(b)(i)	$\frac{x^{3}}{3} \quad-\frac{81}{x} \quad(+C)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{array}{ll} x^{3} & \text { term } \\ x^{-1} & \text { power } \\ \text { correct second term } \end{array}$
(ii)	$\left[\frac{27}{3}-\frac{81}{3}\right]-\left[\frac{1}{3}-81\right]$	M1		Correct use of limits 1 and 3 substituted into answer for part (b)(i)
	$62 \frac{2}{3}$	A1	2	Accept 62.7 or better, condone 62.66 etc
	Total		13	
	TOTAL		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

