

GCE

Mathematics \& Statistics B

Unit MBM5

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& \text { Gain in momentum }=\int_{0}^{4} F \mathrm{~d} t \\
\& =\left[-3 \mathrm{e}^{-2 t}\right]_{0}^{4} \\
\& =3-3 \mathrm{e}^{-8}
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 M1 } \\
\text { A1 }
\end{gathered}
\] \& 4 \& M1 for limits or \(+c\) \\
\hline \& Total \& \& 4 \& \\
\hline \begin{tabular}{l}
\[
2 \text { (a) }
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\left(\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right) \\
\& \boldsymbol{F}=\lambda\left(\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right)
\end{aligned}
\] \\
Considering magnitudes \(3 \lambda=21\) \(\lambda=7\)
\[
\boldsymbol{F}=\left(\begin{array}{c}
-14 \\
14 \\
-7
\end{array}\right)
\] \\
Work done \(=\mathbf{F} . \mathbf{s}\)
\[
=\left(\begin{array}{c}
-14 \\
14 \\
-7
\end{array}\right) \cdot\left(\begin{array}{c}
5 \\
1 \\
-10
\end{array}\right)
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
M1
\end{tabular} \& 4

4 \& For s

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Question Number and part	Solution	Marks	Total	Comments
4	Distance perpendicular to slope: $s=V \sin 15 t-\frac{1}{2} g \cos 30 t^{2}$ Strikes slope when $s=0$ $t=\frac{2 V \sin 15}{g \cos 30} \quad[t=0 \text { not required }]$ Distance along slope $s=V \cos 15 t+\frac{1}{2} g \sin 30 t^{2}$ \therefore Range down slope is $\begin{aligned} & V \cos 15 \cdot \frac{2 V \sin 15}{g \cos 30}+\frac{1}{2} g \sin 30 \cdot \frac{4 V^{2} \sin ^{2} 15}{g^{2} \cos ^{2} 30} \\ & =\frac{2 V^{2} \sin 15 \cos 15}{g \cos 30}+\frac{2 V^{2} \sin 30 \sin ^{2} 15}{g \cos ^{2} 30} \\ & =\frac{2 V^{2} \sin 15}{g \cos ^{2} 30}(\cos 30 \cos 15+\sin 30 \sin 15) \\ & \text { Range }=\frac{2 V^{2} \sin 15 \cos 15}{g \cos ^{2} 30}=\frac{V^{2} \sin 30}{g \cos ^{2} 30} \\ & =\frac{2 V^{2}}{3 g} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	10	Or $\frac{4 V \sin 15}{\sqrt{3} g}$ For exact answer Need to see use of $\sin 30=2 \sin 15 \cos 15$ sc 9 for $\frac{\sqrt{3}+4 \sin ^{2} 15}{3 g}=\frac{2 V^{2}}{3 g}$ without justification
	Total		10	

Question Number and part	Solution	Marks	Total	Comments
5 (a)	$m=10000-200 t$	M1	1	Accept $10000+200 t$
(b)	Initial			
	$m \rightarrow v$ Final			
	$\begin{array}{cc} m+\delta m \\ \rightarrow v+\delta v \end{array} \quad \rightarrow \quad-\delta m$			
	Conservation of linear momentum	M1		
	$m v=(m+\delta m)(v+\delta v)-\delta m(v-600)$	A1		
	$m v=m v+v \delta m+m \delta v-v \delta m+600 \delta m$ (to first order of δ terms)			
	$0=m \delta v+600 \delta m$			
	$\therefore 0=m \frac{\mathrm{~d} v}{\mathrm{~d} t}+600 \frac{\mathrm{~d} m}{\mathrm{~d} t}$	A1		
	$\frac{\mathrm{d} m}{\mathrm{~d} t}=-200$	B1		
	$\Rightarrow \therefore m \frac{\mathrm{~d} v}{\mathrm{~d} t}=120000$	B1		
	$(10000-200 t) \frac{\mathrm{d} v}{\mathrm{~d} t}=120000$	M1		
	$\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{600}{50-t}$	A1	7	
(c)	Maximum acceleration is when t is greatest (and fuel is still burning)	M1		
	$\therefore t=\frac{7000}{200}=35$	B1		
	$\frac{600}{15}=40 \mathrm{~m} \mathrm{~s}^{-2}$	A1	3	
	Total		11	

Question Number and part	Solution	Marks	Total	Comments
6 (a)	$\begin{aligned} & T_{A P}=\frac{\lambda \cdot 3 a}{4 a}=\frac{3}{4} \lambda \\ & T_{P B}=4 m g \cdot \frac{a}{2 a}=2 m g \end{aligned}$ Using $F=m a$ vertically $m g+T_{P B}=T_{A P}$ $\therefore m g+2 m g=\frac{3}{4} \lambda$ $\lambda=4 m g$ When particle is moved a distance x below the equilibrium position, forces acting on it are $\begin{aligned} & m g, T_{A P}=\frac{\lambda \cdot(3 a+x)}{4 a}=\frac{m g(3 a+x)}{a} \\ & T_{P B}=4 m g \cdot \frac{(a-x)}{2 a}=\frac{2 m g}{a}(a-x) \end{aligned}$ and resistance $\frac{1}{5} m k \dot{x}$ [forces 2 and 4 are upwards] Using $F=m a$ vertically downwards $\begin{aligned} & m \ddot{x}=m g+T_{P B}-T_{A P}-\frac{1}{5} m k \dot{x} \\ & m \ddot{x}= \\ & \quad m g+\frac{2 m g}{a}(a-x)-\frac{m g(3 a+x)}{a}-\frac{1}{5} m k \dot{x} \\ & \ddot{x}-g-\frac{2 g}{a}(a-x)+\frac{g(3 a+x)}{a}+\frac{1}{5} k \dot{x}=0 \\ & \ddot{x}+\frac{1}{5} k \dot{x}+\frac{3 g x}{a}=0 \\ & 10 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+2 k \frac{\mathrm{~d} x}{\mathrm{~d} t}+5 k^{2} x=0 \end{aligned}$	B1 M1 A1 A1 M1 M1 m1 A1 A1 A1	4	Either All four forces Dependent on both M1 above

Question Number and part	Solution	Marks	Total	Comments
6 (b) (ii)	Substituting $x=A \mathrm{e}^{n t}$, $10 n^{2}+2 k n+5 k^{2}=0$ $n=\frac{-2 k \pm \sqrt{4 k^{2}-200 k^{2}}}{20}$ $=\frac{1}{10}(-k \pm 7 k \mathrm{i})$ $x=\mathrm{e}^{-\frac{k}{10} t}\left(A \cos \frac{7}{10} k t+B \sin \frac{7}{10} k t\right)$ When $t=0, x=\frac{a}{2}, A=\frac{a}{2}$ Differentiating $\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{k}{10} \mathrm{e}^{-\frac{k}{10} t}\left(A \cos \frac{7}{10} k t+B \sin \frac{7}{10} k t\right) \\ & +\mathrm{e}^{-\frac{k}{10} t}\left(-\frac{7}{10} k A \sin \frac{7}{10} k t+\frac{7}{10} k B \cos \frac{7}{10} k t\right) \end{aligned}$ When $t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=0, \quad 0=-\frac{k}{10} A+\frac{7}{10} k B$ $\begin{aligned} & B=\frac{a}{14} \\ & x=\frac{a}{14} \mathrm{e}^{-\frac{k}{10} t}\left(7 \cos \frac{7}{10} k t+\sin \frac{7}{10} k t\right) \end{aligned}$	M1 A1 M1 Alv B1 M1 Alv M1 A1	9	
	Total		19	
	TOTAL		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

