

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBM4

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
$$ or ft or $\mathbf F$		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
number			marks	
and part				
1(a)	Change in momentum is			
	$0.04 \times 12 - 0.04 \times -8$	B1		Conversion to kg
		M1		
	1 . 00 M	B1	4	Correct signs
	Impulse is 0.8 Ns	A1	4	- 0.8 B2 M1
(b)	Using Force × time = impulse			
		M1		
	Force = $\frac{0.8}{0.05}$			
	= 16 N	A1√	2	ft
	Total		6	
2	Dimensions of a and g are LT^{-2}	B1		
	Dimension of v is LT^{-1}	B1		
	$\lambda = \frac{LT^{-2}}{(LT^{-1})^2}$	M1		
	$(LT^{-1})^2$	1711		
	$=L^{-1}$	A1	4	
	Total		4	
3(a)		M1		
	$= 5\mathbf{i} + 12\mathbf{j}$	A1		
	Magnitude of F is $\sqrt{5^2 + 12^2}$	M1		
	= 13	A1	4	
(b)	Moments about <i>O</i> ;			Can take moments about $(x, 0)$ etc
	12 x	M1 A1		
	$= 3 \times 1 + 4 \times 4 + 6 \times 8 - 1 \times 2 + 2 \times 3 + 7 \times 5$	M1 A1		
	12 x = 106			
	$x = \frac{106}{12} = \frac{53}{6}$	A1	5	
	Point is $(\frac{53}{6},0)$			Can use printed result
	Total		9	

Question number	Solution	Marks	Total marks	Comments
and part	Using conservation of momentum	M1		
4(a)	1	IVI I		
	$3m\binom{7}{-8} + m\binom{2}{5} = m\binom{5}{-4} + 3m \mathbf{v}$	A1		
		M1		
	$3 \mathbf{v} = \begin{pmatrix} 18 \\ -15 \end{pmatrix}$			
	$\mathbf{v} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$	A1	4	
(b)	Change in momentum =			
	$m \binom{5}{-4} - m \binom{2}{5}$	M1		M1 for $-3m\mathbf{i} + 9m\mathbf{j}$
	$=3m\mathbf{i}-9m\mathbf{j}$	A1	2	sc 1 for 3 i – 9 j
(c)	Direction is $\mathbf{i} - 3\mathbf{j}$ oe	B1√		ft from (b)
	Line of centres is parallel to the change in momentum	B1	2	
	Total	DI	8	
	$\begin{array}{c c} T_2 \\ \hline T_1 \\ \hline 500g \end{array}$			
	Resolve horizontally at P $T_1 \cos 60 + T_2 \cos 30 = 0$ $T_1 + \sqrt{3} T_2 = 0$	M1 A1		
	Resolve vertically at <i>P</i> $T_1 \sin 60 + T_2 \sin 30 = -500 g$ $T_1 \sqrt{3} + T_2 = -1000 g$	M1 A1		
	$T_1 = -500\sqrt{3} g$; $T_2 = 500g$ Force in AP is $500\sqrt{3} g$ N or $4900\sqrt{3}$ N			
	or 8490 N in compression Force in <i>BP</i> is 500g N or 4900 N in	A1		sc 5 if g omitted
	tension	A1	6	
(b)	Force in AB is zero since	B1		
()	forces at B are in equilibrium and the			
	other two forces in BC and BP are parallel.	B1	2	
	Total		8	

Question	Solution	Marks	Total	Comments
number			marks	
and part				
6(a)	Moments about A			
	$P 4l \cos \alpha$	M1 A1		M1 awarded for moments about A even
	$= mg(l\cos\alpha - 2l\sin\alpha)$	A1		when on horizontal floor or if $P.4l$ seen
	$P = \frac{\cos \alpha - 2\sin \alpha}{4\cos \alpha} mg$	A1	4	<i>m</i> instead of <i>mg</i> used penalise one A1 in
(1)				question
(b)		3.61 4.1		
	$F - P \cos \alpha = mg \sin \alpha$ People is norman display to the plane	M1 A1		
	Resolve perpendicular to the plane	N/1 A 1		
	$P \sin \alpha + R = mg \cos \alpha$ Using $E = uR$	M1 A1 B1		
	Using $F = \mu R$	DI		
	$mg\sin\alpha + P\cos\alpha = \mu (mg\cos\alpha - P\sin\alpha)$ $P\cos\alpha + \mu P\sin\alpha = \mu mg\cos\alpha - mg\sin\alpha$	M1		
		1V1 1		u ton o
	$P = \frac{\mu \cos \alpha - \sin \alpha}{\cos \alpha + \mu \sin \alpha} mg$	A1	7	Accept $P = \frac{\mu - \tan \alpha}{1 + \mu \tan \alpha} mg$
	$\cos \alpha + \mu \sin \alpha^{mg}$		44	$1 + \mu \tan \alpha$
7(-)	Total	D1	11	
7(a)	Speed of Q is 20 km/h	B1		
	$10\sqrt{3}$			
	9			
	<u> </u> 10			
	$\tan \theta = \frac{10\sqrt{3}}{10}$			
	$\frac{\tan \theta - \frac{10}{10}}{10}$	M1		
	Bearing is 120°	A1	3	
	_			
b(i)	Ship P will travel so that v_P is	M1		(If not gained, can gain M1 in (ii) and all
	perpendicular to the relative velocity			marks in (iii))
	Q			
	θ $\mathbf{v}_{\mathcal{Q}}$; 20			
	\mathbf{v}_P ; 8			
	$\sin\theta = \frac{8}{20} = 0.4$	m1		Dependent on M1 above
	_ = 0	A 1		
	$\theta = 23.6^{\circ}$	A1	4	Dan and dant on East M1
	Bearing of ship P is 054°	B1	4	Dependent on first M1
(ii)	Velocity of P is $8 \sin 53.6\mathbf{i} + 8 \cos 53.6\mathbf{j}$	B1		Accept 053.6° Dependent on M1,M1 in (i)
(11)	Velocity of P is 8 sin 33.01 + 8 cos 33.01 Velocity of Q relative to P is $v_Q - v_P$	DI		Dependent on ivii, ivii iii (i)
	$= (10\sqrt{3} \mathbf{i} - 10\mathbf{j}) - (6.439\mathbf{i} + 4.7498\mathbf{j})$	3.54		
	7 7 7	M1		
	= 10.88 i - 14.75 j = 11 i - 15 j [to 2 significant figures]	A 1	2	
	- 111 - 13j [to 2 significant figures]	A1	3	

Question	Solution	Marks	Total	Comments
number and part			marks	
7(b)(iii)				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		
	$ \varphi = 90 - (30 + \sin^{-1} 0.4) = 36.42 $	A1		
	Minimum distance is 2 sin 36.42 = 1.187 km	M1 A1	4	
(iii)	OR Position of Q relative to P is $2\mathbf{j} + (10.88\mathbf{i} - 14.75\mathbf{j}) t$ Distance apart, D , is			
	$\sqrt{(10.88t)^2 + (2 - 14.75t)^2}$	(M1)		
	$D^2 = 334.486t^2 - 58.8t + 4$	(A1)		
	$\frac{dD^2}{dt} = 668.972t - 58.8$ = 0 when min distance, when $t = \frac{58.8}{668.972} = 0.0879$ Minimum distance is $\sqrt{1.4094}$	(M1)		
	= 1.187 km OR	(A1)	(4)	
(iii)	Accept from printed result Position of Q relative to P is $2\mathbf{j} + (11\mathbf{i} - 15\mathbf{j}) t$			
	Distance apart, <i>D</i> , is $\sqrt{(11t)^2 + (2-15t)^2}$	(M1)		
	$D^2 = 346t^2 - 60 t + 4$	(A1)		
	$\frac{dD^2}{dt} = 692t - 60$	(M1)		
	= 0 when min distance, when $t = \frac{60}{692} = 0.0867$			
	Minimum distance is $\sqrt{1.442948}$			
	= 1.201 km	(A1)	(4)	
	Total		14	
	TOTAL		60	