

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBM2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
$$ or ft or \mathbf{F}		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme		
Incorrect answer without working	zero marks unless specified otherwise		

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question Number	Solution	Marks	Total	Comments
and Part				
1(a)(i)	Initial KE = $\frac{1}{2} \times 65 \times 2^2$	M1		Use of KE formula
(ii)	= 130 J $65 \times 9.8h = 130$	A1 M1	2	Correct energy Using $mgh = 130$
, ,	$h = \frac{130}{637} = 0.204 \mathrm{m} (\mathrm{to}3\mathrm{sf})$	A1	2	Correct h
(b)(i)	$KE = 130 + 65 \times 9.8 \times 6 = 3950 \text{ J (3 sf)}$	M1 A1		Sum of KE+PE or PE at $h = 6.204$ Correct equation
		A 1	3	Correct energy
(ii)	$\frac{1}{2} \times 65v^2 = 3952$	M1		Use of KE formula to find <i>v</i>
	$v = \sqrt{121.6} = 11.0 \text{ms}^{-1}$	A1√	2	Correct v from their energy in part 1(b)(ii)
2()	Total		9	
2(a)	$v = \int 20\sin 4t dt$	M1		Attempt to integrate <i>a</i>
	$= -5\cos 4t + c$	A1		Correct integral with or without <i>c</i>
	$t = 0, v = 0 \Rightarrow c = 5$	M1		Finding c
	$v = 5 - 5\cos 4t$	A1	4	Correct c
(b)	$s = \int 5 - 5\cos 4t dt$	M1	·	Attempt to integrate <i>v</i>
	$=5t-\frac{5}{4}\sin 4t+c$	A1		Correct integral with or without c
	$t = 0, s = 0.8 \Longrightarrow c = 0.8$	M1		Finding c
	$s = 5t - \frac{5}{4}\sin 4t + 0.8$	A 1	4	Correct c
	Total		8	
3(a)(i)	$R\cos 60^\circ = 3 \times 9.8$	M1	-	Resolving vertically
	D 500N	A 1		Correct equation
,	R = 58.8 N	A 1	3	Correct R
(ii)	$58.8\cos 30^{\circ} = 3 \times \frac{v^2}{0.5}$	M1		Resolving vertically
	50.0200	A1		Correct equation
	$v = \sqrt{\frac{58.8\cos 30^{\circ}}{6}} = 2.91 \text{ms}^{-1}$	M1		Solving for <i>v</i>
	V 6	A1	4	Correct v
(b)(i)	No change	B1	1	No change
(ii)	Increased because v^2 is proportional to the radius	B1 B1	2	Increases Reason
	Total	וט	10	INCASUII
	1 Otal		10	

Question	Solution	Marks	Total	Comments
Number				
and Part	0.77			
4(a)	$20 \times 9.8 = \frac{0.7\lambda}{2}$	M1		Use of $T = mg$
	_	A 1		Correct equation
	$\lambda = \frac{2 \times 20 \times 9.8}{0.7} = 560$	A1	3	Correct result from correct working
(b)(i)		M1		Two term energy equation
	$20 \times 9.8L = \frac{300(E-2)}{2 \times 2}$	A1		Correct terms
		A1		Correct signs
	$196L = 140L^2 - 560L + 560$	m1		Expanding and simplifying
	$5L^2 - 27L + 20 = 0$	A1	5	Correct result from correct working
(ii)	$L = \frac{27 \pm \sqrt{27^2 - 4 \times 5 \times 20}}{2 \times 5}$	M1		Solving a quadratic
	= 4.51 or 0.886	A 1		Correct solutions
	L = 4.51	A1	3	Selecting the appropriate solution
	Total		11	
5(a)(i)	s(10) = 25 - 100 + 150 = 75	B1	1	Correct distance
(ii)	$t^3 3t^2$			
	$v = \frac{t^3}{100} - \frac{3t^2}{10} + 3t$	M1		Differentiating s
	v(10) = 10 - 30 + 30 = 10	A1	2	Correct derivative
/***		A1	3	Correct v
(iii)	$a = \frac{3t^2}{100} - \frac{3t}{5} + 3$	3.61		D:cc (: 1:
	$\begin{bmatrix} u - \\ 100 & 5 \end{bmatrix}$	M1		Differentiating <i>v</i> Correct derivative
	a(10) = 3 - 6 + 3 = 0	A1 A1	3	Correct a
(b)			3	
(0)		B1		Value of h
	75 = 100 - k	M1		Substituting $s = 75$ and $t = 10$
	<i>k</i> = 25	A1	3	Correct k
	Total		10	

Question	Solution	Marks	Total	Comments
Number				
and Part				
6(a)	$\int_0^a kx dx = \left[\frac{kx^2}{2}\right]_0^a = \frac{ka^2}{2}$	N/1		Famina integral to find one
	$\int_0^{kx} dx = \left \frac{1}{2} \right = \frac{1}{2}$	M1 A1	2	Forming integral to find area Correct area
(b)	L 10	AI	2	Correct area
(6)	$\frac{ka^2}{2}\overline{x} = \int_0^a kx^2 \mathrm{d}x$	M1		Forming integral to find \bar{x}
	-	A1		Correct expression
	$\frac{ka^2}{2}\bar{x} = \frac{ka^3}{2}$	111		Correct expression
	2^{x-3}			
	= 2a	m1		Evaluating integral and finding \bar{x}
	$\overline{x} = \frac{2a}{3}$	A1	4	Correct \bar{x} from correct working
(c)	$\frac{ka^2}{2}\overline{y} = \int_0^a \frac{k^2 x^2}{2} \mathrm{d}x$	M1		Forming integral to find \bar{y}
	$\frac{1}{2}y = \int_0^1 \frac{1}{2} dx$	A1		Correct expression
	ka^2 k^2a^3			•
	$\frac{ka^2}{2}\overline{y} = \frac{k^2a^3}{6}$	M1		Evaluating integral and finding \bar{y}
	2 0			
	$\overline{y} = \frac{ka}{3}$	A1	4	Correct \overline{y}
	Total		10	
7(a)	a = 0.2	B1		Stating amplitude
	$0.2\omega = 10$	M1		Using $v = a\omega$
	$\omega = 50$	A1		Correct value of ω
	2π π			
	$P = \frac{2\pi}{50} = \frac{\pi}{25}$ $v = 50\sqrt{0.2^2 - 0.16^2}$	A1	4	Correct period from correct working
(b)	50 0 22 0 162	M1		Using $x = 0.16$ in SHM formula
		A1		Correct substitution of all values
	$= 6 \text{ ms}^{-1}$	A1	3	Correct speed
(c)(i)	$\omega = 50, \ q = 0.2$	B1		Correct ω
		B1	2	Correct q
(ii)	$0 = p - 0.2\cos 0$	M1		Using $s = 0$
	p = 0.2	A1	2	Correct p
	Total		11	

Question	Solution	Marks	Total	Comments
Number				
and Part				
8(a)	$0.1v \frac{dv}{dx} = -0.1 \times 9.8 - \frac{v^2}{200}$	M1		Use of $F = ma$ with the resultant force
	$v\frac{dv}{dx} = -(9.8 + \frac{v^2}{20})$	A1	2	Correct result from correct working
	$v \frac{dv}{dx} = -(9.8 + \frac{v^2}{20})$ $\int \frac{v}{9.8 + \frac{v^2}{20}} dv = \int -1 dx$	M1		Forming two integrals
	$10\ln(9.8 + \frac{v^2}{20}) = -x + c$	M1 A1		Integrating Correct integrals
	$v = 12, x = 0 \Rightarrow c = 10 \ln 17$	M1 A1		Finding <i>c</i> Correct <i>c</i>
	$10\ln(9.8 + \frac{v^2}{20}) + x = 10\ln 17$	A1 A1	6	Correct result from correct working
(c)	$10\ln 9.8 + x = 10\ln 17$	M1		Substituting $v = 0$
	10/1 17 1 0 0) 5 51	A1		Correct equation
	$x = 10(\ln 17 - \ln 9.8) = 5.51 \mathrm{m}$	A1	3	Correct x
	Total		11	
	TOTAL		80	