 OUALIFICATIONS

GCE

Mathematics \& Statistics B

Unit MBM1

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
, or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x} \mathbf{E E}$		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working
mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline 1(a)
(b)
(c) \& \[
\begin{aligned}
\& 9=3+1.2 t \\
\& t=\frac{9-3}{1.2}=5 \text { seconds } \\
\& s=\frac{1}{2}(3+9) \times 5=30 \text { metres } \\
\& F=1200 \times 1.2=1440 \mathrm{~N}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2
2
2 \& \begin{tabular}{l}
Forming constant acceleration equation \\
Correct result from correct working \\
Forming constant acceleration equation \\
Correct distance \\
Applying Newton's second law with \(a=1.2\) \\
Correct \(F\)
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 2(a)
(b) \& \[
\begin{aligned}
\& 0.1 \times 5+0.4 \times 3=0.5 v \\
\& v=\frac{1.7}{0.5}=3.4 \mathrm{~ms}^{-1} \\
\& 0.1 \times 5+0.4 \times 3=0.1 v+0.4 \times 3.5 \\
\& v=\frac{1.7-1.4}{0.1}=3 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { m1 } \\
\text { A1 }
\end{gathered}
\] \& 3
4 \& \begin{tabular}{l}
Using conservation of momentum Correct equation \\
Correct \(v\) \\
Using conservation of momentum \\
Correct equation \\
Solving for \(v\) \\
Correct \(v\)
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline 3(a)

(b)
(c)
(d)

(e) \& $$
\begin{aligned}
& R=5 \times 9.8 \cos 40^{\circ}=37.5 \mathrm{~N} \\
& F=0.2 R=7.51 \mathrm{~N} \\
& 5 \times 9.8 \sin 40^{\circ}-F=5 a \\
& a=\frac{5 \times 9.8 \sin 40^{\circ}-F}{5}=4.80 \mathrm{~ms}^{-2} \\
& 10^{2}=2^{2}+2 \times 4.80 \mathrm{~s} \\
& s=\frac{100-4}{9.6}=10.0 \mathrm{~m}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{M} 1 \\
& \\
& \mathrm{~A} 1 \\
& \text { m1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \\
& \text { A1 }
\end{aligned}
$$
\] \& 2

2

4 \& | Correct force diagram |
| :--- |
| Resolving perpendicular to slope |
| Correct R |
| Using $F=\mu R$ |
| Correct F from correct working |
| Resolving parallel to slope to give |
| 3 term equation of motion |
| Correct equation |
| Solving for a |
| Correct a from correct working |
| Forming constant acceleration equation |
| Correct equation |
| Correct s |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments

\hline 4(a) \& $$
\begin{aligned}
& 14 a=14 g \sin 45^{\circ}-T \\
& 6 a=T-6 g \\
& 14 a=14 g \sin 45^{\circ}-(6 a+6 g) \\
& a=\frac{14 g \sin 45^{\circ}-6 g}{20}=1.91 \mathrm{~ms}^{-2} \\
& T=m g \\
& T=14 g \cos 45^{\circ} \\
& m=14 \cos 45^{\circ}=9.90 \mathrm{~kg}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$ \& 6

4 \& | Equation of motion for one particle Correct equation |
| :--- |
| Equation of motion for other particle |
| Correct equation |
| Solving for a |
| Correct a from correct working |
| Equation for one particle |
| Equation for other particle |
| Correct m |

\hline \& Total \& \& 10 \&

\hline 5(a) \& | $50 \times 9.8=R+100 \sin 30^{\circ}$ |
| :--- |
| $R=440 \mathrm{~N}$ |
| $100 \cos 30^{\circ} \leq \mu \times 440$ |
| $\mu \geq 0.197$ |
| $50 a=100 \cos 30^{\circ}-0.1 \times 440$ $a=0.852 \mathrm{~m} \mathrm{~s}^{-2}$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { m1 }
\end{aligned}
$$
\] \& 1

3
3
3

4 \& | Correct force diagram |
| :--- |
| Resolving vertically |
| Correct equation |
| Correct R from correct working |
| Use of $F \leq \mu R$ or $F=\mu R$ |
| Correct equation |
| Correct k from correct working |
| Resolving horizontally to obtain a 3 term |
| equation of motion |
| Correct equation |
| Solving for a |
| Correct a |
| Allow 0.680 or 0.681 |

\hline \& Total \& \& 11 \&

\hline \multirow[t]{3}{*}{6(a)(i)} \& $10 \times 9.8 \times 0.5=2 T$ \& M1 \& \& Moments about pivot with 2 terms

\hline \& $T=24.5$ \& A1 \& \& Correct moment equation

\hline \& \& A1 \& 3 \& Correct tension from correct working

\hline \multirow[t]{3}{*}{(ii)} \& $10 \times 9.8 \times 0.5+40 \times 9.8 \times 3=2 T$ \& M1 \& \& Moments about pivot with 3 terms

\hline \& \& A1 \& \& Correct moment equation

\hline \& $T=613$ (to 3 sf) \& A1 \& 3 \& Correct tension from correct working

\hline (b) \& No change, as the ratios of the distances from the pivot would be the same. \& \[
$$
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \hline
\end{aligned}
$$

\] \& \& | No |
| :--- |
| Reason |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \(7(a)\)
(b) \& \[
\begin{aligned}
\& 0=10 \sin 70^{\circ} t-4.9 t^{2} \\
\& t=0 \text { or } t=\frac{10 \sin 70^{\circ}}{4.9}=1.918 \mathrm{~s} \\
\& R=10 \cos 70^{\circ} \times 1.918=6.56 \mathrm{~m} \\
\& -2=10 \sin 70^{\circ} t-4.9 t^{2}
\end{aligned}
\]
\[
\begin{aligned}
\& 4.9 t^{2}-10 \sin 70^{\circ} t-2=0 \\
\& t=2.11 \text { or }-0.193 \\
\& R=10 \cos 70^{\circ} \times 2.11=7.22 \mathrm{~m}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 5

7 \& | Equation for height equal to zero |
| :--- |
| Solving for t |
| Correct t |
| Calculating range |
| Correct range |
| Forming equation for vertical motion |
| when ball lands |
| LHS correct |
| RHS correct |
| Solving quadratic equation |
| Correct solution |
| Calculating range |
| Correct range |

\hline \& Total \& \& 12 \&

\hline 8(a)
(b)

(c)

(d) \& \[
$$
\begin{aligned}
& 19 \mathbf{i}-25 \mathbf{j}=\frac{1}{2} \mathbf{a} \times 10^{2}+9 \mathbf{i}+10 \mathbf{j} \\
& 50 \mathbf{a}=10 \mathbf{i}-35 \mathbf{j} \\
& \mathbf{a}=0.2 \mathbf{i}-0.7 \mathbf{j} \\
& \mathbf{v}=10(0.2 \mathbf{i}-0.7 \mathbf{j}) \\
& \quad=2 \mathbf{i}-7 \mathbf{j}
\end{aligned}
$$ $$
\begin{aligned}
& v=\sqrt{2^{2}+7^{2}}=7.28 \mathrm{~ms}^{-1} \\
& 15.4=\frac{1}{2} \times 0.2 \times t^{2}+9 \\
& t=8
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 |
| B1 | \& | 4 |
| :--- |
| 4 |
| 2 | \& | Using both position vectors to form a constant acceleration equation |
| :--- |
| Correct equation |
| Solving for a |
| Correct a |
| Use of $\mathbf{v}=\mathbf{a} t$ |
| Correct velocity |
| Finding speed from velocity |
| Correct speed |
| Finding t from one component |
| Correct t |
| Using $t=8$ with other component Correct result |
| Straight line |
| Correct direction |

\hline \& Total \& \& 14 \&

\hline \& TOTAL \& \& 80 \&

\hline
\end{tabular}

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

