

### General Certificate of Education

# Mathematics 6300 Specification A

MAS2/W Statistics 2

## Mark Scheme

### 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

#### MAS2/W

| Q    | Solution                                                                                               | Marks      | Total | Comments                       |
|------|--------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------|
| 1    | $X \sim \text{Po}(50)$                                                                                 |            |       |                                |
|      | $X \sim N(50, 50)$                                                                                     | B1         |       | CAO                            |
|      | $P(X \ge 60) = P(Z > \frac{59.5 - 50}{\sqrt{50}})$                                                     | M1         |       | use of continuity correction   |
|      |                                                                                                        | M1         |       | (standardisation)              |
|      | = P(Z > 1.3435)                                                                                        |            |       |                                |
|      | $=1-\Phi(1.34)$                                                                                        | m1         |       | dependent on (standardisation) |
|      | =1-0.90988                                                                                             |            | _     |                                |
|      | = 0.0901                                                                                               | A1         | 5     | AWFW 0.0895 to 0.0902          |
|      | Total                                                                                                  |            | 5     |                                |
| 2(a) | $Y \sim \text{Geo}(0.8)$                                                                               | B1         | 1     |                                |
| (b)  | $P(Y=5) = (0.2)^4 (0.8)$                                                                               | M1         |       |                                |
|      | = 0.00128                                                                                              | <b>A</b> 1 | 2     |                                |
| (c)  | $E(Y) = \frac{1}{p} = \frac{1}{0.8} = 1.25$                                                            | В1         |       | CAO                            |
|      | $E(Y) = \frac{1}{p} = \frac{1}{0.8} = 1.25$ $Var(Y) = \frac{q}{p^2} = \frac{0.2}{0.64} = \frac{5}{16}$ |            |       |                                |
|      | = 0.3125                                                                                               | B1         | 2     | CAO                            |
|      | Total                                                                                                  |            | 5     |                                |

| MAS2/W (co<br>Q | Solution                                                                                                     | Marks | Total | Comments                                                                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------|-------|-------|----------------------------------------------------------------------------------------------------|
| 3(a)            | O 2 3 t                                                                                                      | B2    | 2     | B1 for straight line on [0, 2]<br>B1 for curve on [2, 3]                                           |
| (b)(i)          | $P(T < 0.5) = \frac{1}{2} \times \frac{1}{2} \times \frac{3}{19} = \frac{3}{76}$                             | M1    |       | or by integration:<br>$\int_{0}^{0.5} \frac{6t}{19} dt = \left[ \frac{3t^2}{19} \right]_{0}^{0.5}$ |
|                 | = 0.0395                                                                                                     | A1    | 2     | $= \frac{3}{76} = 0.0395 \text{ (AG)}$                                                             |
| (ii)            | $Y \sim$ number of times Suneil has to wait for less than 30 seconds                                         |       |       |                                                                                                    |
|                 | $Y \sim B (50, 0.0395)$                                                                                      | B1    |       |                                                                                                    |
|                 | Distributional approximation:<br>$\mu = 50 \times 0.0395 = 1.975$<br>$\sigma^2 = 1.975 \times 0.9605 = 1.90$ |       |       |                                                                                                    |
|                 | $\therefore Y \approx \text{Po}(1.975)$ $P(Y < 4) =$                                                         | B1    |       | AWFW 1.97 to 1.98                                                                                  |
|                 | $e^{-1.97} \left( 1 + 1.97 + \frac{1.97^2}{2!} + \frac{1.97^3}{3!} \right)$                                  | M1A1  |       |                                                                                                    |
|                 | = 0.8616                                                                                                     | A1    | 5     | AWFW 0.860 to 0.862                                                                                |
| (c)             | $E(T) = \frac{6}{19} \int_{0}^{2} t^{2} dt + \frac{6}{19} \int_{2}^{3} t^{2} (3 - t) dt$                     | M1    |       |                                                                                                    |
|                 | $= \left[\frac{2t^3}{19}\right]_0^2 + \left[\frac{6t^3}{19} - \frac{3t^4}{38}\right]_2^3$                    | A1A1  |       |                                                                                                    |
|                 | $=\frac{16}{19} + \frac{33}{38}$                                                                             | M1    |       |                                                                                                    |
|                 | $=\frac{65}{38}$                                                                                             |       |       |                                                                                                    |
|                 | =1.71                                                                                                        | A1    | 5     | CAO                                                                                                |
|                 | Total                                                                                                        |       | 14    |                                                                                                    |

| Q Q | Solution                                                                                     |                                                          |                                                     | Marks    | Total | Comments                                                                              |
|-----|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------|-------|---------------------------------------------------------------------------------------|
| 4   | $H_o: X \sim N(1)$                                                                           |                                                          |                                                     |          |       |                                                                                       |
|     | 0 (                                                                                          | , ,                                                      |                                                     | M1       |       | use of $z = \frac{x - \mu}{\sigma}$                                                   |
|     | X<br>X<150<br>150 < X < 158                                                                  | <i>z</i> -1.25 (-1.25, -0.25)                            | <i>p</i> 0.1056 0.2957                              | A1<br>A1 |       | $z = \pm 1.25$ $z = \pm 0.25$                                                         |
|     | $   \begin{array}{c c}     158 < X < 162 \\     162 < X < 170 \\     X > 170   \end{array} $ | (-0.25, 0.25)<br>(0.25, 1.25)<br>1.25                    | 0.1974<br>0.2957<br>0.1056                          | M1<br>M1 |       | p = 0.1056<br>p = 0.2957                                                              |
|     |                                                                                              |                                                          | $\sum p = 1$                                        | A1       |       | $p = 0.1974$ and $\sum p = 1$                                                         |
|     | O <sub>i</sub>                                                                               | E <sub>i</sub> 21.12                                     | $\frac{\left(O_{i}-E_{i}\right)^{2}/E_{i}}{4.8492}$ | M1       |       | E − 200 × n                                                                           |
|     | 67<br>31<br>64<br>27                                                                         | 59.14<br>39.48<br>59.14                                  | 1.0446<br>1.8214<br>0.3994                          | M1       |       | $E_{i} = 200 \times p_{i}$ use of $\sum \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$ |
|     | <del></del>                                                                                  | $\begin{array}{c c} 21.12 \\ \sum E_i = 200 \end{array}$ | $\frac{1.6370}{\sum = 9.7517}$                      | A1       |       | AWFW 9.6 to 9.8                                                                       |
|     | v = 5 - 1 = 4                                                                                |                                                          |                                                     | B1       |       |                                                                                       |
|     | $\chi_{5\%}^{2}(4) = 9.48$                                                                   |                                                          |                                                     | B1√      |       | AWRT 9.49                                                                             |
|     | ∴ rejec                                                                                      | o .                                                      | <b>+</b>                                            |          |       |                                                                                       |
|     | The evidence $N(160, 64)$ is                                                                 |                                                          |                                                     | A1√      | 12    | ft on $\chi^2$ and critical value                                                     |
|     | Total                                                                                        |                                                          |                                                     |          | 12    |                                                                                       |

| MAS2/W (co<br>Q | Solution                                                       | Marks       | Total | Comments                                                 |
|-----------------|----------------------------------------------------------------|-------------|-------|----------------------------------------------------------|
| 5(a)(i)         | $(Y-X) \sim N(2, 6.25)$                                        | B1          |       | for Normal and $\mu = 2$                                 |
|                 |                                                                | B1          | 2     | for 6.25                                                 |
| (ii)            | $P(Y-X<0) = P\left(Z<\frac{0-2}{2.5}\right)$                   | M1          |       | $z = \frac{0 - \text{their } \mu}{\text{their } r}$      |
|                 | = P(Z < -0.80)                                                 | <b>A</b> 1√ |       |                                                          |
|                 | $=1-\Phi(0.80)$<br>=1-0.78814                                  |             |       |                                                          |
|                 | = 0.21186                                                      |             |       |                                                          |
|                 | = 0.212                                                        | A1          | 3     | AWRT 0.212                                               |
| (b)             | $B = X_1 + X_2 + X_3 + X_4 \sim N(64, 9)$<br>and               |             |       |                                                          |
|                 | $G = Y_1 + Y_2 + Y_3 + Y_4 \sim N(72, 16)$                     | B1          |       |                                                          |
|                 | $\therefore (B-G) \sim N(-8,25)$                               | M1A1        |       | $(G-B) \sim N(8, 25)$                                    |
|                 | P( B-G <5)                                                     |             |       |                                                          |
|                 | $= P\left(\frac{-5 - (-8)}{5} < Z < \frac{5 - (-8)}{5}\right)$ | M1          |       |                                                          |
|                 | = P(0.6 < Z < 2.6)                                             | A1          |       |                                                          |
|                 | $=\Phi(2.6)-\Phi(0.6)$                                         |             |       |                                                          |
|                 | = 0.99534 - 0.72575                                            |             |       |                                                          |
|                 | = 0.26959                                                      | A1          |       |                                                          |
|                 | · D( D C  5) 0.720                                             | A1          | 7     | AWRT 0.730                                               |
|                 | $\therefore P( B-G >5)=0.730$                                  | Al          | /     | Alternative:                                             |
|                 |                                                                |             |       | $P\lceil (B-G) < -5 \rceil + P\lceil (B-G) > 5 \rceil =$ |
|                 |                                                                |             |       | $\Phi(0.6)+\left[1-\Phi(2.6)\right]$                     |
|                 |                                                                |             |       | = 0.7257 + 0.0047                                        |
|                 |                                                                |             |       | = 0.73041                                                |
|                 |                                                                |             |       | = 0.730                                                  |
|                 | Total                                                          |             | 12    |                                                          |

| MAS2/W (co | Solution                                                                | Marks      | Total | Comments                      |
|------------|-------------------------------------------------------------------------|------------|-------|-------------------------------|
| 6(a)       | $H_o: \mu = 65$                                                         | B1         | Total | Comments                      |
|            | $H_1: \mu > 65$                                                         | В1         | 2     |                               |
|            | $\Pi_1$ . $\mu > 0.5$                                                   | D1         | _     |                               |
|            | ( _2)                                                                   | D.1        |       | 0.04                          |
| (b)        | $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N(65, 0.64)$ | B1<br>B1   | 2     | for 0.64<br>for Normal and 65 |
|            | (n)                                                                     | ы          | 2     | 101 Normal and 03             |
| (a)        | D(T L)                                                                  |            |       |                               |
| (c)        | P(Type I error) =                                                       |            |       |                               |
|            | P(H <sub>o</sub> rejected when H <sub>o</sub> true)                     |            |       |                               |
|            | $= P(\overline{X} > 66.4 \text{ when } \mu = 65)$                       |            |       |                               |
|            | $=P\left(Z>\frac{66.4-65}{0.8}\right)$                                  | 3.41       |       |                               |
|            |                                                                         | M1         |       |                               |
|            | =P(Z>1.75)                                                              | m1         |       | area change                   |
|            | =1-0.95994                                                              |            |       |                               |
|            | = 0.04006                                                               | A1         |       | AWRT 0.040                    |
|            | ∴ significance level of test ≈ 4%                                       | A1√        | 4     | ft on Type I error            |
| (d)        | P(Type II error) =                                                      |            |       |                               |
|            | P(H <sub>o</sub> accepted when H <sub>o</sub> false)                    |            |       |                               |
|            | $P(\overline{X} < 66.4 \text{ when } \mu = 67)$                         |            |       |                               |
|            |                                                                         |            |       |                               |
|            | $=P\left(Z<\frac{66.4-67}{0.8}\right)$                                  | M1         |       |                               |
|            | =P(Z<-0.75)                                                             | A1         |       |                               |
|            | $=1-\Phi(0.75)$                                                         |            |       |                               |
|            | =1-0.77337                                                              | m1         |       |                               |
|            | = 0.22663                                                               |            |       |                               |
|            | = 0.227                                                                 | <b>A</b> 1 | 4     | AWRT 0.23                     |
|            |                                                                         |            |       |                               |
|            | Total                                                                   |            | 12    |                               |
|            | TOTAL                                                                   |            | 60    |                               |