ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6300 Specification A

MAP6 Pure 6

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
ISW
BOD
WR
FB
deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
given benefit of doubt
work replaced by candidate
formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
mark as in scheme
Incorrect answer without working
zero marks unless specified otherwise
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work
do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method
award method and accuracy marks as appropriate

MAP6

Q	Solution	Marks	Total	Comments
1(a) (b)(i) (ii)	$\mathbf{A B}=\left[\begin{array}{ccc} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{array}\right]$ This transformation represents a rotation of 180° about the z-axis together with an enlargement scale factor 3 from the origin z-axis	B2,1,0 B1 B1 B1 B1 B1		accept reflection in z-axis or in both x and y-axes accept 'stretch' as long as clear, but not enlargement along an axis OE
	Total		7	
2	Method 1: $\begin{aligned} & x-2 z=a-b \\ & x-z=b+c \end{aligned}$ Solving: $\begin{aligned} & z=-a+2 b+c \\ & y=2 a-3 b-2 c \\ & x=-a+3 b+2 c \end{aligned}$ $\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{rrr} -1 & 3 & 2 \\ 2 & -3 & -2 \\ -1 & 2 & 1 \end{array}\right]\left[\begin{array}{l} a \\ b \\ c \end{array}\right]$ Inverse is $\left[\begin{array}{rrr}-1 & 3 & 2 \\ 2 & -3 & -2 \\ -1 & 2 & 1\end{array}\right]$	M1A1 A1 A1F A1F A1F M1 A1F	8	2 equations in the same 2 unknowns Method 2: determinant of matrix B1 cofactors M1 transpose M1 inverse matrix $\left[\begin{array}{rrr}-1 & 3 & 2 \\ 2 & -3 & -2 \\ -1 & 2 & 1\end{array}\right] \quad$ A2, 1,0 ft on determinant SC consistent sign error in cofactors: mark B1M1A1 $\begin{array}{ll} {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{rrr} -1 & 3 & 2 \\ 2 & -3 & -2 \\ -1 & 2 & 1 \end{array}\right]\left[\begin{array}{l} a \\ b \\ c \end{array}\right]} & \text { M1A1F } \\ x=-a+3 b+2 c \\ y=2 a-3 b-2 c & \text { A1F } \\ z=-a+2 b+c & \end{array}$ Note: if both methods used, mark the better of the two and use the rest of the available marks for the other part
	Total		8	
3(a)	$\begin{aligned} \operatorname{det} \mathbf{M} & =+1(-1+2)+2(-2-10)+3(2+5) \\ & =-2 \end{aligned}$ New volume $=2 V$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	allow one error
(b)		A1F	1	ft here provided new volume >0 and determinant <0
	Total		3	

MAP6 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} \mathbf{a} \times \mathbf{a}-\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\ +\mathbf{b} \times \mathbf{a}-\mathbf{b} \times \mathbf{b}+\mathbf{b} \times \mathbf{c} \\ -\mathbf{c} \times \mathbf{a}+\mathbf{c} \times \mathbf{b}-\mathbf{c} \times \mathbf{c} \end{aligned}$	M1A1		$\mathbf{a}^{2}-\mathbf{a b} \text { etc M0A0 }$
	Use of $\mathbf{a} \times \mathbf{a}=0$ $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$	M1 M1		
	$\begin{aligned} & -2 \mathbf{a} \times \mathbf{b}+2 \mathbf{a} \times \mathbf{c} \\ & -2 \mathbf{a} \times(\mathbf{b}-\mathbf{c}) \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	6	OE
(b)	$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{C B}=\mathbf{b}-\mathbf{c}$	B1		
	$\mathbf{a} \neq 0, \mathbf{b}-\mathbf{c} \neq 0 \text { (given) }$	E1		
	$\mathbf{a} \times(\mathbf{b}-\mathbf{c})=0 \Rightarrow O A$ parallel to $C B$	B1	3	
	Total		9	

MAP6 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(a)(i) \& \[
\begin{aligned}
\overrightarrow{A B}=\overrightarrow{D C} \& =\left[\begin{array}{l}
3 \\
5 \\
4
\end{array}\right] \therefore \quad \begin{array}{ll}
A B \| D C \text { and } A B=D C \\
\therefore \& \text { parallelogram }
\end{array} \\
\overrightarrow{A B} \times \overrightarrow{A D} \& =\left[\begin{array}{l}
3 \\
5 \\
4
\end{array}\right] \times\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
\& =\left[\begin{array}{r}
16 \\
-8 \\
-2
\end{array}\right]
\end{aligned}
\] \& \begin{tabular}{l}
B1B1 \\
B1 \\
M1A1F
\end{tabular} \& 2

3 \& OE eg $A B \| C D$ and $A D \| B C$ or $A B=D C$ and $A D=B C$

\hline (iii) \& $$
|\overrightarrow{A B} \times \overrightarrow{A D}|=\sqrt{16^{2}+8^{2}+2^{2}}=18
$$ \& M1A1 \& 2 \& \[

\mathrm{AG}
\]

\hline (b) \& K is $(5,0,-1)$ direction of l is $\left[\begin{array}{r}8 \\ -4 \\ -1\end{array}\right]$ \& | M1A1 |
| :--- |
| B1 | \& 3 \& must show a method here

\hline (c) \& | Π has equation $8 x-4 y-z=-121$ |
| :--- |
| At M, $\begin{gathered} 8(5+8 \lambda)-4(-4 \lambda)-(-1-\lambda)=-121 \\ \lambda=-2 \\ M \text { is }(-11,8,1) \end{gathered}$ | \& \[

$$
\begin{array}{|c}
\text { M1A1 } \\
\text { M1A1F } \\
\text { A1F } \\
\text { A1 }
\end{array}
$$
\] \& 6 \& CAO

\hline (d) \& $K M$ is distance between

\[
$$
\begin{aligned}
& (5,0,-1) \text { and }(-11,8,1) \\
& \sqrt{16^{2}+8^{2}+(-2)^{2}}=18 \\
& \therefore \text { Volume }=18 \times 18=324
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| A1F | \& 3 \& clear method

\hline \& Total \& \& 19 \&

\hline \& TOTAL \& \& 60 \&

\hline
\end{tabular}

