ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6300 Specification A

MAP3 Pure 3

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1(a)
(b) \& \[
1-5 x+10 x^{2}-10 x^{3}+5 x^{4}-x^{5}
\]
\[
-10 \times 3^{2} \times 2^{3}=-720
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2

2 \& | $1,5,10,10,5,1$ (6 terms needed) attempt numerical coefficients |
| :--- |
| CAO |
| $3^{5}\left(\frac{2}{3}\right)^{2} \times 10$ or $\frac{5 \times 4 \times 3}{2 \times 3} \times 3^{2} \times 2^{3}$ are acceptable |
| CAO |
| SC $1080 x^{2} \quad 1 / 2$ |

\hline \& Total \& \& 4 \&

\hline \multirow[t]{2}{*}{| 2(a) |
| :--- |
| (b) |} \& | $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{4}{-2 t}$ |
| :--- |
| when $t=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-1}{2}$ |
| gradient of normal $=2$ $\begin{aligned} & y=2 x+c \quad t=4 \quad x=-14 \quad y=16 \\ & y=2 x+44 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1F |
| B1F |
| M1 |
| A1F | \& 2

4 \& | use of chain rule if $\frac{\mathrm{d} x}{\mathrm{~d} y}$ attempted, must be clearly stated ISW where appropriate |
| :--- |
| SC eliminate t first: award M1 for correct use of chain rule, A1 for $\frac{-2}{t}$ |
| for evaluating gradient ft deriv of any function of t except $-2 t$ |
| ft on gradient; could still be in terms of t use of their $(-14,16)$ and gradient |
| ft on gradient |
| if tangent found, needs to be in form $y=-\frac{1}{2} x+9$ |

\hline \& Total \& \& 6 \&

\hline \multirow[t]{5}{*}{| 3(a)(i) |
| :--- |
| (ii) |
| (b) |} \& $P=20$ \& B1 \& 1 \&

\hline \& $$
P=20 \mathrm{e}^{1.5}=89.6 \approx 90
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 2 \& | 89 or 90 (not 89.6) |
| :--- |
| 89.6 without working: M1 A0 |

\hline \& \[
$$
\begin{aligned}
& 50=\mathrm{e}^{\frac{t-6}{4}}\left(\text { or } 1000=20 \mathrm{e}^{\frac{t-6}{4}}\right) \\
& \ln 50=\frac{t-6}{4}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 | \& \& or $1001=20 \mathrm{e}^{\frac{t-6}{4}}$ or $1000.5=20 \mathrm{e}^{\frac{t-6}{4}}$ taking logs

\hline \& $t=21.6$ \& A1 \& 3 \& 22 acceptable if working shown (otherwise 2/3)

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MAP3 (cont)

MAP3 (cont)

Q	Solution	Marks	Total	Comments
6	$\begin{aligned} & \int 400-x^{2} \mathrm{~d} x=\int \frac{10}{\pi} t \mathrm{~d} t \\ & 400 x-\frac{x^{3}}{3}=\frac{5 t^{2}}{\pi}+c \\ & t=0, x=6 \Rightarrow c=2328 \\ & x=20 \quad t=43.5 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \\ \text { M1A1F } \\ \text { M1A1 } \end{gathered}$	7	attempt to separate and integrate A1 for each side; for both, need c somewhere or use of limits ft on finding c, sensible error $43,44,43,4,43.456$ SC use of $t=0, x=0$: allow M0 A0 M1 A0 max SC use of limits : $\begin{array}{lr} {[\cdots]_{6}^{20}=} & \mathrm{M} 1 \\ \mathrm{f}(20)-\mathrm{f}(6)=5 t^{2} & \mathrm{~m} 1 \\ \pi(5333.33-2328)=5 t^{2} & \mathrm{~A} 1 \\ t=43.5 \text { (or alternatives given above) } & \mathrm{A} 1 \end{array}$
	Total		7	

MAP3 (cont)

Q	Solution	Marks	Total	Comments
7(a)	M is (4, 1,0)	B1		PI
	$\overrightarrow{P M}-\left[\begin{array}{l} 2 \\ 2 \end{array}\right] \overrightarrow{A C}-\left[\begin{array}{l} 4 \\ 0 \end{array}\right]$	M1		$O C-O A$ or $O M-O B$ (or vice versa)
	$[-1][8]$	A1F	3	ft on midpoint
				Alternative: $\begin{aligned} & B M=B A+\frac{1}{2} A C\left(\text { or } B C+\frac{1}{2} C A\right) \\ & B A=O A-O B \text { or } A C=O C-O A \\ & \mathrm{M} 1 \\ & \overrightarrow{B M}=\left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array}\right] \overrightarrow{A C}=\left[\begin{array}{l} 4 \\ 0 \\ 8 \end{array}\right] \mathrm{CAO} \\ & \mathrm{~A} 1 \end{aligned}$
(b)	$\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 2 \\ 1 \\ -4 \end{array}\right]+\lambda\left[\begin{array}{l} 4 \\ 0 \\ 8 \end{array}\right]+\mu\left[\begin{array}{r} 2 \\ -3 \\ -1 \end{array}\right] .$	B1		r or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=O A$ or $O B$ or $O C$ or $O M \ldots$
		B1F	2	$\begin{aligned} & \ldots+\lambda A C+\mu B M \quad \mathrm{OE} \\ & \mathrm{ft} \text { on part (a) } \end{aligned}$
(c)	$\left[\begin{array}{r} 6 \\ 5 \\ -3 \end{array}\right] \cdot\left[\begin{array}{l} 4 \\ 0 \\ 8 \end{array}\right]=24-24=0$	M1A1		M1 for $\left[\begin{array}{c}6 \\ 5 \\ -3\end{array}\right] \bullet A C(\mathrm{OE}$ from (b))
	$\left[\begin{array}{r} 6 \\ 5 \\ -3 \end{array}\right] \cdot\left[\begin{array}{r} 2 \\ -3 \\ -1 \end{array}\right]=12-15+3=0$	A1E1	4	both scalar products zero, so perpendicular to plane
				$\begin{array}{ll}\text { Alternative 1: } \\ \text { Rearrange (b) to } \mathbf{r} \bullet \mathbf{n}=\mathrm{d} \\ \text { Attempt to eliminate } \lambda, \mu & \text { M1 } \\ \lambda, \mu \text { eliminated } & \text { M1 } \\ 6 x+5 y-3 z=29 & \text { A1 } \\ \text { normal is perpendicular to plane } & \text { E1 }\end{array}$
				Alternative 2: cross product $\left[\begin{array}{l} 4 \\ 0 \\ 8 \end{array}\right] \wedge\left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array}\right]=\left[\begin{array}{c} 24 \\ 20 \\ -12 \end{array}\right]=4\left[\begin{array}{c} 6 \\ 5 \\ -3 \end{array}\right]$ M1 attempt M1 A1 $a \wedge b$ is perpendicular to a, b
(d)	$\|B M\|=\sqrt{2^{2}+3^{2}+1^{2}}$	B1		
	$\|B D\|^{2}=t^{2}\left(6^{2}+5^{2}+(-3)^{2}\right)=\|B M\|^{2}$	M1		
	$t^{2}=\frac{14}{70}\left(=\frac{1}{5}\right)$	A1	3	AG
	Total		12	

