ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6300 Specification A

MAP1 Pure 1

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
ISW
BOD
WR
FB
deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
given benefit of doubt
work replaced by candidate
formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
mark as in scheme
Incorrect answer without working
zero marks unless specified otherwise

More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work
do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method
award method and accuracy marks as appropriate

MAP1

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & \mathrm{f}(1.5)=-0.375 \\ & \mathrm{f}(1.6)=0.656 \end{aligned}$ Sign change \Rightarrow root between	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	3	
	Total		3	
2(a)	Ratio $=4$	B1	1	allow $1: 4$ or $4: 1$
(b)	Formula for nth term	M1		stated or used
	nth term $12\left(4^{n-1}\right)$	A1	2	OE; allow M1A0 for $12\left(4^{n}\right)$
(c)	Formula for sum of GP	M1		stated or used
	$S=12 \frac{\left(4^{30}-1\right)}{4-1}$	m1		
	$\ldots=4\left(4^{30}-1\right)$	A1		OE
	$\ldots=2^{62}-4$	A1	4	convincingly shown (AG)
	Total		7	
3(a)	$\mathrm{y}^{\prime}=4 \ldots$	B1		
	$\ldots-\frac{1}{2} x^{-\frac{3}{2}} \ldots$	M1A1		M1 if coefficient or index correct
	$y^{\prime \prime}=\frac{3}{4} x^{-\frac{5}{2}}$	m1A1F	5	m 1 if coefficient or index correct; ft wrong coefficient of $x^{-\frac{3}{2}}$
(b)	When $x=\frac{1}{4}, y^{\prime}=0$	M1A1	2	convincingly verified (AG)
(c)(i)	$\text { At SP, } y^{\prime \prime}=24$	A1F	1	dependent on m 1 in (a); ft wrong coefficient of $x^{-\frac{5}{2}}$
(ii)	Positive value \Rightarrow minimum	E1F	1	ft wrong value of $y^{\prime \prime}$ at SP
	Total		9	
4(a)	$\left(\frac{280-120}{8}\right)=20$ or better So number of rows $=20+1=21$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	allow M1A0 if this is c's answer; allow M1 if formula for nth term stated or used NMS 2/2
(b)	Formula for sum of AP	M1		stated or used
	Numbers substituted	m1		including c's value for n
	Number of tiles $=4200$		3	
	Total		5	

MAP1 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	Arc length formula	M1		stated or used
	Perimeter $=9(\mathrm{~cm})$	A1	2	
(ii)	Sector area formula	M1		stated or used
	Area $=4.5\left(\mathrm{~cm}^{2}\right)$	A1	2	
(b)(i)	$\frac{1}{2} r^{2} \theta=4.5$	M1		OE; M1A0 for verification
	Hence result	A1	2	convincingly shown (AG)
(ii)	$2 r+r \theta=18$	M1		OE; M1A0 for verification
	Hence result	A1	2	convincingly shown (AG)
(iii)	All terms multiplied by r	M1	2	M1A0 for verification
	Hence result	A1	2	convincingly shown (AG)
(iv)	$r=\frac{18 \pm \sqrt{18^{2}-72}}{4}$	M1		OE
	$\begin{aligned} & r \approx 8.47 \\ & \theta \approx 0.125 \end{aligned}$	$\begin{gathered} \mathrm{A} 1 \\ \mathrm{~m} 1 \mathrm{~A} 1 \\ \hline \end{gathered}$	4	Allow AWRT 8.47 Allow AWRT 0.125 or 0.126
	Total		14	
6(a)	$\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \text { and } / \text { or } \cos \frac{\pi}{3}=\frac{1}{2}$	M1		
	Result verified convincingly	A1	2	AG
(b)	$\sin ^{2} x+\cos ^{2} x \equiv 1$	M1		stated or used
	Result clearly established	A1	2	AG
(c)	Solution of quadratic	M1		leading to two values of $\cos x$
	$\cos x=-1 \Rightarrow x=\pi$	A1		condone degrees or decimals
	$\cos x=\frac{1}{2} \Rightarrow x=\frac{\pi}{3} \ldots$	A1		condone degrees or decimals
	... or $\frac{5 \pi}{3}$ (only other root)	A1	4	ignore values outside domain; NMS 0/4
	Total		8	

MAP1 (cont)

