

General Certificate of Education

Mathematics 6300 Specification A

MAM4/W Mechanics 4

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

MAM4/W

Q Q	Solution	Marks	Total	Comments
1(a)(i)	Using " $F = ma$ ":			
	$9g - 0.01v^2 = 9\frac{\mathrm{d}v}{\mathrm{d}t}$	M1A1	2	
(ii)	At terminal velocity, $\frac{dv}{dt} = 0$	M1		
	$9g - 0.01v^2 = 0$			
	$9g - 0.01v^2 = 0$ $v^2 = \frac{9g}{0.01}$			
	$v = 93.9 \text{ m s}^{-1} \text{ or } 42\sqrt{5} \text{ m s}^{-1}$	A1F	2	
(b)	$9g - 0.01v^2 = 9\frac{dv}{dt}$ $9g - 0.01v^2 = 9\frac{dv}{dx}v$			
	$9g - 0.01v^2 = 9 \frac{\mathrm{d}v}{\mathrm{d}x}v$	B1		for using $\frac{\mathrm{d}v}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}x}$
	$\int_{0}^{x} dx = 9 \int_{0}^{v} \frac{v dv}{9g - 0.01v^{2}}$	M1		attempt at integration with correct separation of variables
	$[x]_0^x = \frac{-9}{0.02} \left[\ln \left(9g - 0.01v^2 \right) \right]_0^v$	A1F		
	$x = -450 \left[\ln \left(9g - 0.01v^2 \right) - \ln \left(9g \right) \right]$	m1 A1F		correct use of limits or evaluation of constant
	$x = 450 \left[\ln(9g) - \ln(9g - 0.01v^2) \right]$	A1F	6	
	$x = 450 \ln \frac{9g}{9g - 0.01v^2}$			AG
	Total		10	

MAM4/W (co	Solution	Marks	Total	Comments
Ų		IVIAIKS	Total	Comments
2(a)	By Newton's law of Gravitation: $F = \frac{6.7 \times 10^{-11} \times 100 \times 6.0 \times 10^{24}}{x^2}$	M1		
	$-\frac{6.7 \times 10^{-11} \times 100 \times 6.0 \times 10^{24}}{x^2} = 100a$	M1		Using " $F = ma$ "
	$a = -\frac{4.02 \times 10^{14}}{x^2}$	A1	3	
(b)	$v \frac{dv}{dx} = -\frac{4.02 \times 10^{14}}{x^2}$	B1		
	$\int_{u}^{0} v dv = -4.02 \times 10^{14} \int_{6.4 \times 10^{6}}^{12.4 \times 10^{6}} \frac{dx}{x^{2}}$	M1		attempt at integration with correct separation of variables
	$\left[\frac{1}{2} v^2 \right]_u^0 = \left[4.02 \times 10^{14} x^{-1} \right]_{6.4 \times 10^6}^{12.4 \times 10^6}$	A1F ml		ft on the A1 in (a) use of limits or evaluation of a constant
	$u^{2} = 8.04 \times 10^{14} \left[\frac{1}{6.4 \times 10^{6}} - \frac{1}{12.4 \times 10^{6}} \right]$	A2,1		A1 if signs are not correct
	$u = 7800 \mathrm{ms^{-1}}$	A1F	7	AWRT
	Total		10	

MAM4/W (co				
Q	Solution	Marks	Total	Comments
3(a)	No transverse force $\Rightarrow \frac{m}{r} \frac{d}{dt} (r^2 \dot{\theta}) = 0$	M1A1		
(b)	$r^{2}\dot{\theta} = C$ $aU = C$ $r^{2}\dot{\theta} = aU$ $m(\ddot{r} - r\dot{\theta}^{2}) = -2km\dot{\theta}^{2}$ $\ddot{r} = r\dot{\theta}^{2} - 2k\dot{\theta}^{2}$ $\ddot{r} = \frac{r^{4}\dot{\theta}^{2}}{r^{3}} - 2k\frac{r^{4}\dot{\theta}^{2}}{r^{4}}$ $\ddot{r} = \frac{a^{2}U^{2}}{r^{3}} - 2k\frac{a^{2}U^{2}}{r^{4}}$ $\ddot{r} = \frac{aU}{r^{2}}\left(\frac{aU}{r} - k\right)$	M1 A1 M1A1	4	
	$\ddot{r} = \frac{a^2 U^2}{r^3} - 2k \frac{a^2 U^2}{r^4}$ $\ddot{r} = \frac{aU}{r^2} \left(\frac{aU}{r} - k \right)$	M1 A1	4	eliminating $\dot{\theta}$ AG
(c)	$r = a \Rightarrow$ $\ddot{r} = \frac{U}{a}(U - k)$ $r \text{ is min } \Rightarrow$	M1		
	$\ddot{r} \ge 0 \Rightarrow U \ge k$	A1	2	
	Total		10	

MAM4/W (co Q	Solution	Marks	Total	Comments	
		TVICTING	1041	Comments	
4(a)	$\int_{6}^{x} \frac{\mathrm{d}x}{x} = -\int_{0}^{t} 3\mathrm{d}t$	M1		Alternative:	
				verify $x = 6$ when $t = 0$ B1	
	$\ln x - \ln 6 = -3t$ $x = 6e^{-3t}$	A1		verify $x = 6e^{-3t}$ satisfies the d.e M1	A1
	$x = 6e^{-3t}$	A1	3	AG	
(b)(i)	$\dot{y} = 2x - y$				
	$\dot{y} + y = 12e^{-3t}$	M1		eliminating x	
	$\dot{y} = 2x - y$ $\dot{y} + y = 12e^{-3t}$ $\ddot{y} + \dot{y} = 2\left(-18e^{-3t}\right)$ $m^2 + m = 0$			Alternative:	
	$m^2 + m = 0$			Integrating factor is e ^t M1	
	m = -1			$\left \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{t} y \right) = 12 \mathrm{e}^{-3t} \times \mathrm{e}^{t} $ A1F	
	$CF y = Be^{-t}$	M1		$e^{t}y = 12\left(-\frac{1}{2}e^{-2t}\right) + C$ M1A1	1F
	For PI $y = Ce^{-3t}$	A1F		$t = 0, y = 0 \Rightarrow C = 6$ A1F	
	$-3Ce^{-3t} + Ce^{-3t} = 12e^{-3t}$	M1		$e^{t} y = -6e^{-2t} + 6$	
	C = -6	A1F		$y = 6e^{-t} - 6e^{-3t}$ A1F	
	GS $y = Be^{-t} - 6e^{-3t}$				
	$t = 0, y = 0 \Rightarrow B = 6$				
	GS $y = Be^{-t} - 6e^{-3t}$ $t = 0, y = 0 \implies B = 6$ $y = 6e^{-t} - 6e^{-3t}$	A1F	6		
(ii)	$\dot{z} = 3\left(6e^{-t} - 6e^{-3t}\right)$				
	$z = -18e^{-t} + 6e^{-3t} + D$	M1A1F			
	$t = 0, \ z = 0 \Rightarrow D = 12$				
	$z = -18e^{-t} + 6e^{-3t} + 12$	A1F	3		
(c)	$6e^{-3t} = 6e^{-t} - 6e^{-3t}$				
	$e^{-2t} = 0.5$				
	t = 0.347 (or 0.35)	M1A1F	2	M1 only for $t = \frac{1}{2} \ln 2$	
	, , ,			2 2	
	Total		14		

Q Q	Solution	Marks	Total	Comments
5(a)	T = 10(x - 0.5) or $-10(x - 0.5)$	M1A1	2	
(b)	$10(x-0.5) - 2v = 1\frac{dv}{dt}$ $\frac{dv}{dt} + 2v - 10x = -5$	M1A1F	3	Newton's 2 nd law AG
(c)(i)	The rate of change of the length of the spring = speed of A relative to B $\therefore \dot{x} = 1 - v$	E1	1	OE
(ii)	$-\ddot{x} + 2(1-\dot{x}) - 10x = -5$	M1		
	$\ddot{x} + 2\dot{x} + 10x = 7$	A1	2	AG
(d)	Auxiliary equation: $m^2 + 2m + 10 = 0$	M1		
	$m = -1 \pm 3i$	A1		
	$CF x = e^{-t} \left(A \sin 3t + B \cos 3t \right)$	M1		
	PI $x = \alpha$			
	$\dot{x} = \ddot{x} = 0$	M1 A1F		
	$\alpha = \frac{7}{10}$			
	GS $x = e^{-t} (A \sin 3t + B \cos 3t) + \frac{7}{10}$	A1F	6	
(e)	$t \rightarrow \infty$			
	$e^{-t} \rightarrow 0$			
	$x \to \frac{7}{10}$	M1A1F	2	
	Total		16	
	TOTAL		60	