GCE 2005 January Series

Mark Scheme

Mathematics A

(MAS2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M mark is for m	ethod
mmark is dependent on one or more M marks and is form	ethod
A mark is dependent on M or m marks and is foracc	uracy
B mark is independent of M or m marks and is for method and acc	uracy
E mark is for explan	nation
or ft or Ffollow through from pre	vious
incorrect	result
CAO correct answer	r only
AWFW	vithin
AWRT	nds to
AGanswer	given
SCspecia	l case
OE	valent
A2,1	marks
-x EE	error
NMSno method s	hown
PIpossibly in	plied
SCA	roach
ccan	didate
SF significant fig	ure(s)
DPdecimal pla	ace(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted <i>x</i> marks for mis-copy
MR – <i>x</i>	deducted x marks for mis-read
ISW	
BOD	
WR	
FB	formulae booklet

Application of Mark Scheme

	No method shown:	
	Correct answer without working	mark as in scheme
	Incorrect answer without working	zero marks unless specified otherwise
	More than one method/choice of solution:	
	2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
	1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
	Crossed out work	do not mark unless it has not been replaced
correct meth	Alternative solution using a correct or partially nod	award method and accuracy marks as appropriate

Q	Solution	Marks	Total	Comments
1(a)(i)	$S \sim B(12, 0.09)$	B1	1	
(ii)	$P(S \ge 4) = 1 - P(S \le 3)$	M1		AWRT
	=1-0.9820 = 0.018	A1	2	
(b)	Let $X =$ number of boxes which contain 4. or more eggs made with white chocolate			
	Then: $X \sim B(300, 0.018)$	B1		САО
	$np = 300 \times 0.018 = 5.4$			
	$npq = 5.4 \times 0.982 \approx 5.3$			
	\Rightarrow use a Poisson approximation	M1		
	$X \approx P_{o}(5.4)$	A1		САО
	$P(X \ge 3) = 1 - P(X \le 2)$	M1		$e^{-5.4}\left(1+5.4+\frac{5.4^2}{2}\right)$
	$= 1 - \{ P(X = 0) + P(X = 1) + P(X = 2) \}$			$=e^{-5.4}\times 20.98$
	=1-0.0948			= 1 - 0.09476
	= 0.905	A1	5	AWRT = 0.905
	Total		8	

MAS2

MAS2	(cont)
------	--------

Q	Solution	Marks	Total	Comments
2(a)	$P(2 \le X \le 3) = F(3) - F(2)$	M1		
	$=\frac{27}{64} - \frac{1}{8}$ $=\frac{19}{64} = 0.297$	A1	2	CAO/AWRT
(b)	$f(x) = \begin{cases} \frac{3x^2}{64} & 0 \le x \le 4 \end{cases}$	M1A1	2	
(c)(i)	$\mathrm{E}(X) = \int_0^4 x.\mathrm{f}(x) \mathrm{d}x$			
	$=\int_0^4 \frac{3x^3}{64} \mathrm{d}x$	M1		
	$=\frac{3x^4}{256}\Big _0^4$	A1√		
	= 3	A1	3	CAO
(ii)	$\operatorname{Var}(X) = \int x^{2} f(x) dx - \left[E(X) \right]^{2}$			
	$= \int_0^4 \frac{3x^4}{64} \mathrm{d}x - (3)^2$	M1		
	$=\frac{3x^5}{320}\Big _0^4-9$	A1√		on their $f(x)$ and μ^2
	$=9\frac{3}{5}-9$			
	$=\frac{3}{5}$ or 0.6	A1	3	САО
	Total		10	

Q	Solution	Marks	Total	Comments
3(a)	$X \sim \text{Geo}(0.1)$	B1	1	
(b)	$P(X=4) = (0.9)^3 \times (0.1)$	M1		
	= 0.0729	A1	2	AWRT
(c)	$\mathbf{P}(X \le n) = 1 - (0.9)^n$	M1		
	$\therefore 1 - (0.9)^n \ge 0.95$			
	$\Rightarrow (0.9)^n \le 0.05$	M1		
	$n=28 \Rightarrow \left(0.9\right)^{28}=0.0523$	M1		AWRT
	$n=29 \Rightarrow (0.9)^{29}=0.0471$	A1		CAO
	The minimum number of days = 29		4	
	Total		7	

MAS2 (cont)

MAS2 (cont)

ļ	Q	Solution	Marks	Total	Comments
	4	H_0 : no association between their gender and type of holiday preferred	B1		(for at least (H_0))
		H ₁ : there is an association between their gender and type of holiday			
		Totals:			
		1189821690114204208212420	B1		САО
		Expected frequencies:			
		$\frac{216 \times 208}{420} = 106.97$			
		$\frac{216 \times 212}{420} = 109.03$	M1		
		$\frac{204 \times 208}{420} = 101.03$	A1		
		$\frac{204 \times 212}{420} = 102.97$			
		v = 1	B1		
		$\sum rac{\left[\left O_i - E_i ight - 0.5 ight]^2}{E_i}$	M1		Yates' correction
		= 1.036 + 1.017 + 1.097 + 1.077			
		= 4.22/: χ^2 (1) = 3.841	Al B1		AWFW 4.20 to 4.24 (4.20 if E rounded to neareast integer)
		4.23 > 3.841 : reject H			(Only if H_0 stated)
		Evidence at the 5% level of an association between the gender of single people and			
		the type of holiday that they prefer to take.	E1√	10	
		Total		10	

MAS2 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	E(X-Y) = 120 - 90 = 30	B1	1	САО
		-		
(ii)	Var(X - Y) = 36 + 13 = 49	B1	1	CAO
(b)	P(X - Y > 40.5)			
	$= \mathbb{P}\left(Z > \frac{40.5 - 30}{7}\right)$	M1		САО
	= P(Z > 1.5)	A1√		On their μ and r
	$=1-\Phi(1.5)$			
	=1-0.93319	m1		
	= 0.06681	A1	4	AWRT 0.0668
(-)(2)	$\mathbf{E}(T) = \mathbf{E}(Y) + \mathbf{E}(Y) + 2\mathbf{E}(Y)$			
(c)(l)	$E(I) = E(X_1) + E(X_2) + 2E(I)$			
	= 120 + 120 + 180 = 420	B 1		CAO
	$\operatorname{Var}(T) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2)$	DI		
	+4Var(Y)	M1		
	=36+36+52			
	=124	A1	3	CAO
(ii)	T N(420 124)			
(11)	$T \sim N(420, 124)$			
	$P(T < 400) = P\left(Z < \frac{400 - 420}{\sqrt{124}}\right)$	M1		
	= P(Z < -1.796)	A1√		
	=1-0.96407	M1		
	= 0.03593	A1	4	AWFW 0.0355 to 0.0365
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	$H_{o}: \mu = 48$			
	$H_1: \mu > 48$	B1		(both)
	Since <i>n</i> is large, $\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$			
	(Central limit theorem)			
	\therefore for H ₀ true,			
	$\overline{X} \sim N\left(48, \frac{64}{100}\right) \sim N\left(48, (0.8)^2\right)$	B1		for 0.64
	$z = \frac{49.2 - 48}{0.8} = 1.50$	M1A1		
	$z_{crit} = \pm 1.6449$	B1		
	\therefore do not reject H _o	A1√		on their z & critical value
	Insufficient evidence at the 5% level to. reject the committee's claim	E1√	7	on their z & critical value
(b)	$P\left(\overline{X} < 48 + 0.8 \times 1.6449\right)$	M1A1		
	$= P\left(Z < \frac{49.316 - 50}{0.8}\right)$	M1		
	=P(Z < -0.8551)	A1		
	=1-0.80511			
	= 0.19489		-	
	= 0.195	AI	5	AWFW 0.189 to 01.98
	l Otal Total		60	
	Iotai		00	