GCE 2005 January Series

Mark Scheme

Mathematics A

(MAP4)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M mark is for	method
m mark is dependent on on	e or more M marks and is for method
A mark is dependent on M	or m marks and is foraccuracy
B mark is independent of M	A or m marks and is for method and accuracy
E mark is for	explanation
\checkmark or ft or F	follow through from previous
	incorrect result
CAO	correct answer only
AWFW	anything which falls within
AWRT	anything which rounds to
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
SF	significant figure(s)
DP	decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	
BOD	
WR	
FB	formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAP4	
------	--

Q MAP4	Solution	Marks	Total	Comments
		IVIALKS	Total	Comments
1(a)	$\beta = 1 - 2i$	B1	1	
மிர்	$\alpha \beta = (1+2i)(1-2i) = 5$	B1	1	
	$\alpha p = (1 + 21)(1 - 21) = 5$	DI	1	
(ii)	$\alpha\beta\gamma = -30 \gamma = -6$	M1A1F	2	
(c)	Method for either p or q	M1		
		A1FA1F	3	
	Total		7	
2(9)	LHS = $r^2 \left(r^2 + 2r + 1 - \left(r^2 - 2r + 1 \right) \right)$	M1	,	
$\mathcal{L}(a)$	$=4r^{3}$	A1	2	AG
	=4r		2	
(b)	$4 \times 50^3 = 50^2 \times 51^2 - 49^2 \times 50^2$			For $100^2 \times 101^2 - 50^2 \times 51^2$ M1A0m1A0
	$4 \times 51^3 = 51^3 \times 52^2 - 50^3 \times 51^2$			For $100^2 \times 99^2 - 49^2 \times 50^2$ M1A0m1A0
	$4 \times 100^3 = 100^2 \times 101^2 - 99^2 \times 100^2$	M1A1		
	$4S = 100^2 \times 101^2 - 49^2 \times 50^2$	ml		Clear cancellation shown.
	<i>S</i> = 24001875	A1F	4	If $\sum r^3$ quoted mark M1A1 only
	Total		6	
3 (a)	$r=\sqrt{2}, \ \ \theta=\frac{1}{4}\pi$	B1B1	2	
- ()	4		_	
(b)	$(1+i)^{21} - (1-i)^{21}$			
	$= \left(\sqrt{2}\right)^{21} e^{\frac{21\pi i}{4}} - \left(\sqrt{2}\right)^{21} e^{\frac{-21\pi i}{4}}$	M1A1		
	$\left(\sqrt{2}\right)^{21}\left(\cos\frac{21\pi}{4} + i\sin\frac{21\pi}{4}\right)$			
	$-\cos\frac{21\pi}{4}+\sin\frac{21\pi}{4}\right)$	A1F		
	$= \left(\sqrt{2}\right)^{21} 2 \operatorname{i} \sin \frac{21\pi}{4}$	A1F		If $\sqrt{2}$ not $\left(\sqrt{2}\right)^{21}$ lose final A1 also
	= - 2048i	A1F	5	provided of the correct form
	Total		7	

MAP4 (cont)					
Q	Solution	Marks	Total	Comments	
4(a)(i)	(-3,-1) (-3,-1)				
	Circle Centre below $x - axis$, radius ≈ 5	B1 B1	2		
(ii)	Half line with gradient ≈ 1 through $(-3, 0)$	B1 B1	2		
(b)(i)	Explanation from diagram	B1	1		
(ii)	Verification that $\left -7 - 4i + 3 + i\right = 5$	M1A1			
	Verification that arg $(-7 - 4i + 3) = -\frac{3\pi}{4}$	M1A1	4		
	Total		9		
5(a)(i)	$P\left(\frac{e^{x}+e^{-x}}{2}\right)+q\left(\frac{e^{x}-e^{-x}}{2}\right)=r$ $(p+q)e^{x}+(p-q)e^{-x}=2r$ $(p+q)e^{2x}-2re^{x}+(p-q)=0$	M1			
	$(p+q)e^{x}+(p-q)e^{-x}=2r$	A1			
	$(p+q)e^{2x}-2re^{x}+(p-q)=0$	A1	3	AG	
	$e^{x} = \frac{2r \pm \sqrt{4r^{2} - 4(p - q)(p + q)}}{2(p + q)}$ Use of $p^{2} = q^{2} + r^{2}$ to show that	M1A1		$b^2 - 4ac \text{ only}$ used M1A1 only	
	Use of $p^2 = q^2 + r^2$ to show that $e^x = \frac{r}{p+q}$ $e^x > 0 \Rightarrow$ one solution $e^x = \frac{12}{18}$ $x = \ln\left(\frac{2}{3}\right)$ Total	m1A1			
	$e^x > 0 \Rightarrow$ one solution	E1	5		
(b)	$e^x = \frac{12}{18}$	M1			
	$x = \ln\left(\frac{2}{3}\right)$	A1	2	CAO	
	Total		10		

Q	Solution	Marks	Total	Comments
6(a)	$f(n+1)-f(n) = 4 \times 7^{n+1} + 3 \times 5^{n+1}$			
	$+5-4 \times 7^{n}-3 \times 5^{n}-5$	M1		
	Grouping in powers of 7 and 5	m1		
	$=4\times7^{n}(7-1)+3\times5^{n}(5-1)$	A1		
	$= 24 \times 7^n + 12 \times 5^n$	A1	4	AG
(b)	f(1) = M(12) shown	B1		
	Assume result true for $n = k$			
	Then $f(k+1) = f(k) + M(12)$	M1		
	= M(12)	A1		Clear demonstration
	$P(k) \Rightarrow P(k+1)$ and $P(1)$ true	E1	4	Provided M1 earned
	Total		8	

MAP4 (cont)

MAP4 (cont) 0 Solution Marks Total **Comments** 7(a) $\left| \frac{d}{dx} (\sinh^{-1} x) \right| = \frac{1}{\sqrt{1+x^2}}$ **B**1 $\frac{\mathrm{d}}{\mathrm{d}x}\left(x\sqrt{1+x^2}\right) = \sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}}$ M1A1 Reasonable attempt at product rule for M1 Result = $2\sqrt{1+x^2}$ AG A1 4 **(b)(i)** $S = 2\pi \int_{\ln\left(\frac{3}{4}\right)}^{\ln\left(\frac{4}{3}\right)} e^x \sqrt{1 + (e^x)^2} dx$ M1 $= 2\pi \int_{\ln\left(\frac{3}{2}\right)}^{\ln\left(\frac{4}{3}\right)} e^{x} \sqrt{1 + e^{2x}} dx$ A1 2 AG (ii) $u = e^x$, $\frac{du}{dx} = e^x$ M1 Use of formula possibly implied $S = 2\pi \int_{\frac{3}{4}}^{\frac{4}{3}} \sqrt{1 + u^2} \,\mathrm{d}u$ Must be of this from to score further marks A1 ignore limits here $=\pi \left[\sinh^{-1} u + u \sqrt{1 + u^2}\right]_{\frac{3}{4}}^{\frac{4}{3}}$ A1 $= \sin h^{-1} \frac{4}{3} + \frac{4}{3} \sqrt{1 + \left(\frac{4}{3}\right)^2}$ A1F $-\sinh^{-1}\frac{3}{4}-\frac{3}{4}\sqrt{1+\left(\frac{3}{4}\right)^2}$ $=\pi \left[\ln 3 + \frac{20}{9} - \ln 2 - \frac{15}{16} \right]$ m1A1F $=\pi \left[\ln \frac{3}{2} + \frac{185}{144} \right]$ 7 A1F Total 13 Total 60