GCE 2005
 January Series

ASSESSMENT and QUALIFICATIONS

Mark Scheme

Mathematics A

(MAP3)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website:
www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]
Key to Mark Scheme

Abbreviations used in Marking

Application of Mark Scheme

No method shown:

Correct answer without working .. mark as in scheme
Incorrect answer without working... zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MAP3

Q	Solution	Marks	Total	Comments
1(a)	$x=\frac{\sqrt{3}}{2}, y=1$ both	B1	1	Accept $x=0.866$
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{-2 \sin t}{\cos t}$	M1A1	2	
(ii)	Grad at $P=-2 \sqrt{3}$	B1F	1	Accept $-3.46,-\sqrt{12} ; \mathrm{ft} \frac{\mathrm{d} y}{\mathrm{~d} x}$ and
(c)	$y-1=-2 \sqrt{3}\left(x-\frac{\sqrt{3}}{2}\right)$	M1		OE
			Consistent errors in $\sin \frac{\pi}{3}$ and/or $\cos \frac{\pi}{3}$	

MAP3 (cont)

Q	Solution	Marks	Total	Comments
2(a)(i)	$(1+x)^{-1}$			
	$=1+-1 x+\frac{-1 \cdot-2}{2!} x^{2}+\frac{-1 \cdot-2 \cdot-3}{3!} x^{3} .$	M1		
	$=1-x+x^{2}-x^{3} \ldots$	A1	2	
	$\frac{1}{(3+2 x)}=\frac{1}{3}(\ldots)$	B1		Alternative - use of $(a+x)^{n}$
	$x \rightarrow \frac{2}{3} x \Rightarrow 1-\frac{2}{3} x+\frac{4}{9} x^{2}-\frac{8}{27} x^{3}$	M1		$\begin{aligned} & (3+2 x)^{-1}=3^{-1}+-1 \times 3^{-2}(2 x)+ \\ & \frac{-1-2-3^{-3}(2 x)^{2}}{2!}+\frac{-1-2-3-3^{-4}(2 x)^{3}}{3!} \end{aligned}$
				$\begin{array}{cc} \text { powers of } 3 \text {, and }(2 x) & \text { M1 } \\ n=-1, \text { and factorials } & \text { M1 } \end{array}$
	$\left(1+\frac{2}{3} x\right)^{-1}=$			all correct A1
	$\frac{1}{3}-\frac{2}{9} x+\frac{4}{27} x^{2}-\frac{8}{81} x^{3}$	A1	3	AG convincing by obtained
2(b)	$8+7 x=A(3+2 x)+B(1+x)$	M1		
	$x=-1 \quad x=-\frac{3}{2}$	M1		
	$A=1 \quad B=5$	A1	3	
(c)	$\left(1-x+x^{2}-x^{3}\right)+$	M1		
	$5\left(\frac{1}{3}-\frac{2}{9} x+\frac{4}{27} x^{2}-\frac{8}{81} x^{3}\right)$	A1F		$\mathrm{ft} A$ and B and expansions
	$=\left(\frac{8}{3}-\frac{19}{9} x+\frac{47}{27} x^{2}-\frac{121}{81} x^{3}\right)$	A1	3	OE; CAO
	Total		11	

MAP3 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$t=7$	M1		
	$P=90 \times 1.12^{7}=198.9 \ldots=199$	A1	2	AG
(b)	$k^{7}=1.5$	M1		
	$k=\sqrt[7]{1.5}$ or $7 \ln k=\ln 1.5$	m1		
	$k=1.059 \ldots$	A1	3	AG
(c)	$P=Q \Rightarrow \frac{1}{3}=\frac{1.06^{t}}{1.12^{t}}$	M1		Or reciprocal.
				t on one side of correct equation with $\frac{270}{90}=3$.
	$t \ln \left(\frac{1.12}{1.06}\right)=\ln 3$	m1		OE
	$t=19.95$	A1		Accept range 19.83 to 19.95
	$1998+19=2017$	B1F	4	$\mathrm{ft} t$ condone 2018 SC trial and improvement Accept $\frac{2017}{18}$ for B1 only
	Total		9	

MAP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{gathered} \mathrm{f}(x)=\mathrm{e}^{-3 x} \quad \mathrm{f}^{\prime}(x)=-3 \mathrm{e}^{-3 x} \\ \\ \mathrm{f}^{\prime \prime}(x)=9 \mathrm{e}^{-3 x} \end{gathered}$	M1A1	2	
(ii)	$\begin{aligned} & \mathrm{f}(x)=\mathrm{f}(0)+\mathrm{f}^{\prime}(0) x+\mathrm{f}^{\prime \prime}(0) \frac{x^{2}}{2!} \ldots \\ & \mathrm{f}(0)=1 \quad \mathrm{f}^{\prime}(0)=-3 \quad \mathrm{f}^{\prime \prime}(0)=9 \end{aligned}$	M1		
	$\mathrm{f}(x) \approx 1-3 x+\frac{9}{2} x^{2}$	A1	2	AG. Use of Maclaurin from (i) required.
(b)	$\ln (1+3 x) \approx 3 x-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3}$	M1		Allow $3 x-\frac{3 x^{2}}{2}+\frac{3 x^{3}}{3}\left(\right.$ or $\left.x^{3}\right)$
	$=3 x-\frac{9}{2} x^{2}+9 x^{3}$	A1	2	CAO but allow $\frac{27}{3} x^{3}$
(c)	$3 x-\frac{9}{2} x^{2}+9 x^{3}-\left(2 x-6 x^{2}+9 x^{3}\right)=0.1$	M1		
	$1.5 x^{2}+x-0.1=0$	A1F		$\mathrm{ft} \ln (1+3 x)$ and simplification to $\mathrm{f}(x)=0$. Correct quadratic any equivalent form
	$x=\frac{-1+\sqrt{1.6}}{3}=0.088$	M1A1	4	
	Total		10	

MAP3 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & 40 \mathrm{~cm} \mathrm{sec}^{-1} \text { or } \frac{\mathrm{d} r}{\mathrm{dt}}=40 \\ & t=2 \quad r=40 t+50=130 \end{aligned}$	B1 B1	2	
(b)(i)	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{k}{r} \quad \int r \mathrm{~d} r=\int k \mathrm{~d} t$	M1		Using limits $\int r \mathrm{~d} r=\int k \mathrm{~d} t$
	$\frac{1}{2} r^{2}=k t+c$	A1		$\left[\frac{1}{2} r^{2}\right]_{50}^{250}=[k t]_{0}^{5}$
	$t=0 ; r=50 \quad \frac{1}{2} r^{2}=k t+1250$	M1		$\frac{1}{2}\left[250^{2}-50^{2}\right]=5 k$
	$\begin{aligned} t=5 ; \quad r=250 \quad 5 k & =31250-1250 \\ k & =6000 \end{aligned}$	A1	4	AG $\quad k=6000$
(ii)	$\begin{aligned} & r^{2}=26500 \\ & r=162.8 \approx 163 \end{aligned}$	B1F	1	ft sensible equation for r. (c found in (i)) AWRT
(iii)	$\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \frac{\mathrm{~d} r}{\mathrm{~d} t} \quad \text { or } A=\pi(2 k t+2500)$	M1		Chain rule in A, r, t. OE
	$\frac{\mathrm{d} A}{\mathrm{~d} t}=2 \pi r \times \frac{k}{r} \quad \frac{\mathrm{~d} A}{\mathrm{~d} t}=\pi \times 2 k$			
	$=2 \pi k$ which is constant as k is constant	$\begin{aligned} & \text { A1 } \\ & \text { E1 } \end{aligned}$	3	12000π which is constant
	Total		10	

MAP3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 6(a) \& $$
\begin{aligned}
& \overrightarrow{A B}=\left[\begin{array}{r}
2 \\
-3 \\
-2
\end{array}\right] \\
& r=\left[\begin{array}{l}
3 \\
5 \\
1
\end{array}\right]+\lambda\left(\begin{array}{r}
2 \\
-3 \\
-2
\end{array}\right)
\end{aligned}
$$ \& M1

A1 \& 2 \& $r=$ or $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=$ required.

\hline \multirow[t]{3}{*}{(b)} \& | $2 x+y-3 z=1$ |
| :--- |
| At $C,(2 \times 1)+8-(3 \times 3)=2+8-9=1$ | \& B1 \& \& \[

or\left($$
\begin{array}{r}
2 \\
1 \\
-3
\end{array}
$$\right) \cdot\left($$
\begin{array}{l}
1 \\
8 \\
3
\end{array}
$$\right)=2+8-9=1
\]

\hline \& $$
\left.\begin{array}{ll}
3+2 \lambda=1 & \lambda=- \\
5-3 \lambda=8 & \lambda=-\left(\begin{array}{l}
3 \\
5 \\
1-2 \lambda=3
\end{array}\right. \\
1
\end{array}\right)+\lambda=-\left(\begin{array}{r}
2 \\
-3 \\
-2
\end{array}\right)=\left(\begin{array}{l}
1 \\
8 \\
3
\end{array}\right)
$$ \& B1

E1 \& 3 \& | $\lambda=-1$ |
| :--- |
| $\lambda=-1$ stated as verifying vector |

\hline \& Line $A D$ is $r=\left[\begin{array}{l}3 \\ 5 \\ 1\end{array}\right]+t\left(\begin{array}{r}2 \\ 1 \\ -3\end{array}\right)$ \& B1

B1 \& 2 \& | equation or the 3 component equations seen. $r=\left[\begin{array}{l} 3 \\ 5 \\ 1 \end{array}\right]+t A D \text { with } A D \text { in sensible col. }$ |
| :--- |
| form. $A D=\left[\begin{array}{r} 2 \\ 1 \\ -3 \end{array}\right]$ |

\hline (ii) \& \[
$$
\begin{aligned}
& \text { At } D, 2(3+2 t)+(5+t)-3(1-3 t)=1 \\
& 8+14 t=1 \quad t=-\frac{1}{2} \\
& D \text { is }\left(2, \frac{9}{2}, \frac{5}{2}\right)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& 3 \&

\hline \multirow[t]{3}{*}{(iii)} \& $$
\overrightarrow{A C} \cdot 2(\overrightarrow{A D})=\left[\begin{array}{r}
-2 \\
3 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
-2 \\
-1 \\
3
\end{array}\right]
$$ \& M1 \& \& \pm correct vectors, or multiples.

\hline \& $$
\begin{aligned}
& =4-3+6=7 \\
& \sqrt{17} \sqrt{14} \cos \theta=7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { A1 } \\
& \text { M1 }
\end{aligned}
$$
\] \& \& Correct scalar product formula between two vectors.

\hline \& $\cos \theta=0.4537 \ldots \quad \theta=63.0^{\circ}$ \& A1F \& 4 \& F on θ acute.

\hline \& Total \& \& 14 \&

\hline \& Total \& \& 60 \&

\hline
\end{tabular}

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

