GCE 2005 January Series

Mark Scheme

Mathematics A

(MAP2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

m mark is dependent on one or more M marks and is for	method
A mark is dependent on M or m marks and is for	accuracy
B mark is independent of M or m marks and is for method a	nd accuracy
E mark is for	explanation
\checkmark or ft or F	om previous
inc	orrect result
CAO correct	answer only
AWFW anything which	falls within
AWRT	ch rounds to
AG	nswer given
SC	special case
OE	or equivalent
A2,1	uracy marks
-x EE	or each error
NMSno me	ethod shown
PIposs	ibly implied
SCA	ect approach
c	candidate
SF	ant figure(s)
DPdeci	mal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted <i>x</i> marks for mis-copy
MR – <i>x</i>	deducted x marks for mis-read
ISW	ignored subsequent working
BOD	
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	mark as in scheme zero marks unless specified otherwise
More than one method/choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAP1

Q	Solution	Marks	Total	Comments
1(a)	Formula for <i>n</i> th term of AP	M1		Stated or used
	$n = \frac{1}{3}(800 - 101) + 1 = 234$	A1	2	Shown, not verified (AG)
(b)	Formula for sum of AP	M1		Stated or used
	$S = \frac{234}{2} (101 + 800)$			
	or $S = \frac{234}{2} (2(101) + 3(233))$	ml		Allow one error here
	=105417	A1	3	
(c)	$S = \frac{117}{2} (104 + 800)$			
	Or $S = \frac{117}{2} (2(104) + 6 (116))$	M1		Allow one error here
	= 52 884	A1	2	
	Total		7	
2(a)(i)	y' = 4 9 x^{-2}	B1 M1A1	3	M1 for kx^{-2}
(ii)	At SP $4 = 9x^{-2}$	M1		
	$\Rightarrow x^2 = \frac{9}{4}$	ml		OE
	SPs are $(\frac{3}{2}, 12)$	A1A1		
	\dots and $\left(-\frac{3}{2}, -12\right)$	A1	5	
(b)(i)	$\int y \mathrm{d}x = 2x^2 + 9 \ln x (+c)$	M1A1	2	M1 if one term correct
(ii)	Substitutions and subtraction	M1		F(2) - F(1) in c's $F(x)$ (not in y or y')
	Area = $(8 + 9 \ln 2) - 2$	ml	-	Condone one small error, e.g. use of
	$= 6 + 9 \ln 2$	A1	3	decimals
	Total		13	

MAP2

Q	Solution	Marks	Total	Comments
1(a)(i)	$\alpha + \beta = 3$	B1	1	
(ii)	$\alpha\beta = 9$	B1	1	
(b)(i)	$\frac{6}{\alpha} \times \frac{6}{\beta} = \frac{36}{\alpha\beta} = 4$	B1ft	1	
(ii)	$\frac{6}{\alpha} + \frac{6}{\beta} = \frac{6(\alpha + \beta)}{\alpha\beta} = 2$	M1A1ft	2	
(c)	New quadratic equation is:			
	$x^2 - 2x + 4$	M1A1√	2	On their b(i) and b(ii)
	Total		7	
2(a)	$f(x) = xe^x - 5 = 0$			
	f(1) = e - 5 < 0			(-2.28)
	$f(2) = 2e^2 - 5 > 0$	B1		(9.78)
	Change of sign \Rightarrow root in range $1 < x < 2$	E1	2	
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(x\mathrm{e}^x) = x\mathrm{e}^x + \mathrm{e}^x$	M1A1	2	
(c)	$x_0 = 1.2$			
	f(1.2) = -1.01586			
	f'(1.2) = 7.30426	B1		(can be implied by what follows)
	$x_1 = 1.2 - \left\{ \frac{-1.01586}{7.30426} \right\}$	M1		
	$x_1 = 1.2 + 0.13908$			Evidence of use of Newton-Raphson
	$x_1 = 1.339 (3 dp)$	A1	3	(on their $f'(1.2)$)
	Total		7	

MAP2 (cont)

Q	Solution	Marks	Total	Comments
3	$f(x) = x^3 + ax^2 + bx + 6$			
	f(1) = 1 + a + b + 6 = 24a + b = 17	M1		Substitution of 1 or -2 attempted.
	f(-2) = -8 + 4a - 2b + 6 = 24			
	$\Rightarrow 4a - 2b = 26 \Rightarrow 2a - b = 13$	A1		Correct equations
	$\Rightarrow a = 10 \text{ and } b = 7$	A1√A1 √	4	ft on their equations
	Total		4	
4(a)(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left[1+x^2\right]\right) = \frac{2x}{1+x^2}$	M1A1	2	
(ii)	$\int_{0}^{1} \frac{x}{1+x^{2}} dx \left[= \frac{1}{2} \ln \left(1+x^{2} \right) \right]_{0}^{1}$	M1		
	$=\frac{1}{2}\ln 2 - \frac{1}{2}\ln 1$			
	$=\frac{1}{2}\ln 2$	A1	2	(0.347)
(b)(i)	$y = \tan^{-1} x \Longrightarrow x = \tan y$	B1	1	
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \sec^2 y$	B1	1	OE
(iii)	$\sec^2 y = 1 + \tan^2 y$	M1		
	$= 1 + x^{2}$ $\therefore \frac{dy}{dx} = \frac{1}{\sec^{2} y}$			
	$=\frac{1}{1+x^2}$	A1	2	
(iv)	$\int_0^1 \frac{\mathrm{d}x}{1+x^2} = \left[\tan^{-1}x\right]_0^1$	M1		
	$=\frac{\pi}{4}$	A1	2	(0.785°)
(c)	Shaded area $=\frac{\pi}{4} - \frac{1}{2} \ln 2$	M1A1	2	(on their b(iv) and a(ii))
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$x = 0$ $y = 2\sqrt{3} = 3.4641$			
	$x = 1$ $y = \sqrt{15} = 3.8730$			
	$x = 2 \qquad \qquad y = 4$			
	$x = 3$ $y = \sqrt{15} = 3.8730$	M1		For correct <i>x</i> -values attempted
	$x = 4$ $y = 2\sqrt{3} = 3.4641$			
	$x = 5$ $y = \sqrt{7} = 2.6458$			
	$x = 6 \qquad \qquad y = 0$	A1		
	Area = $\frac{1}{2} \times 1 \times \{2\sqrt{3} + 0 + 2(17.8558)\}$	M1		
	Area = $\frac{1}{2} \times 39.176$			
	Area = 19.6	A1	4	(AWRT 19.6)
(b)(i)	Radius of circle = 4	B1	1	[6-2=4; OB-OC=r]
(ii)	$\ln \Delta ACO \ \cos ACO = \frac{2}{4} = 0.5$	M1		
	$ACO = 60^{\circ}$			
	$ACB = 180^{\circ} - 60^{\circ}$			
	=120°	A1	2	

MAP2 (cont)

Q	Solution	Marks	Total	Comments
5(c)(i)	sector $ACB = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3}$			
	$=\frac{16\pi}{3}$	B1	1	(16.8)
(ii)	Shaded area = ΔAOC + sector <i>CAB</i>	M1		Δ attempted
	$\Delta AOC = \frac{1}{2} \times 2 \times 2\sqrt{3}$			
	$=2\sqrt{3}$			
	Exact value of shaded area is:			
	$\frac{16\pi}{3} + 2\sqrt{3}$	A1	2	AG
(d)	$Volume = \pi \int_0^6 y^2 dx$	M1		Correct integration attempted.
	Volume = $\pi \int_{0}^{6} \left[16 - (x - 2)^{2} \right] dx$			
	$= \left[16\pi x\right]_{0}^{6} - \pi \left[\frac{1}{3}(x-2)^{3}\right]_{0}^{6}$	A1A1		Correct integrations.
	$=(96-24)\pi$			
	$=72 \pi$	A1	4	CAO (226)
	Total		14	

MAP2	(cont)
	(COHL)

Q	Solution	Marks	Total	Comments
6(a)	$6\sin\theta + 8\cos\theta \equiv R\sin(\theta + \alpha)$			
	$\equiv R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$			
	$\Rightarrow R \sin \alpha = 8$			
	$R\cos\alpha = 6$			
	$\tan \alpha = \frac{4}{3}$	M1A1		
	$\alpha = 0.927^{\circ}$			AWRT 0.927 <u>or</u> 53. 13°
	and $R = 10$	B1	3	
	$6\sin\theta + 8\cos\theta \equiv 10\sin(\theta + 0.927^{\circ})$			
(b)(i)	$CG = 2 \times 4\cos\theta = 8\cos\theta$	B1		
	$GF = 2 \times 3\sin\theta = 6\sin\theta$	B1		
	Perimeter = $3+3+4+4+GF+CG$			
	$= 14 + 6\sin\theta + 8\cos\theta$	B1	3	
(ii)	$P = 14 + 10\sin(\theta + \alpha)$			
	$P_{\rm max} = 24$	B1√		(on their R from (a))
	When $\sin(\theta + \alpha) = 1$			
	$\Rightarrow \theta + \alpha = \frac{\pi}{2}$	M1		
	$\theta = \frac{\pi}{2} - 0.9273$			(36.9°)
	$\theta = 0.644^{\circ}$ (3dp)	A1√	3	(on their α from (a))

Q	Solution	Marks	Total	Comments
6(c)(i)	$\Delta CDH = \frac{1}{2} \times 3 \times 3 \times \sin 2\theta = 4.5 \sin 2\theta$	M1		
	$\Delta EFH = \frac{1}{2} \times 4 \times 4 \times \sin(\pi - 2\theta)$	A1		
	$=8\sin 2\theta$			
	$\Delta CHFG = 8\cos\theta \times 6\sin\theta$	M1		
	$=24\sin 2\theta$	A1		
	Total area of the pentagon is given by:			
	$A = 36.5\sin 2\theta$	A1	5	AG
(ii)	$A_{\text{max}} = 36.5$ when $\sin \theta = 1$	M1		0 45°
	$\Rightarrow \theta = \frac{\pi}{4}$ $\cdot P\left(\theta = \frac{\pi}{4}\right) = 14 + 6\sin\frac{\pi}{4} + 8\cos\frac{\pi}{4}$	IVI I		$\theta = 45$
	$\left(\begin{array}{c} 0 \\ -4 \end{array}\right) = 1 + 0 \sin \frac{4}{4} + 0 \cos \frac{4}{4}$			
	$=14+14\times\frac{\sqrt{2}}{2}$			
	$=14+7\sqrt{2}$			
	$=7\left(2+\sqrt{2}\right)\left(\mathrm{cm}\right)$	A1	2	
	Total		16	
	Total		60	

MAP2 (cont)