GCE 2005 January Series

Mark Scheme

Mathematics A

(MAME)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

Mmark is for	method
mmark is dependent on one	or more M marks and is for method
Amark is dependent on M of	or m marks and is foraccuracy
Bmark is independent of M	or m marks and is formethod and accuracy
Emark is for	explanation
\checkmark or ft or F	follow through from previous
	incorrect result
CAO	correct answer only
AWFW	anything which falls within
AWRT	anything which rounds to
AG	
SC	
OE	or equivalent
A2,1	
- <i>x</i> EE	
NMS	no method shown
PI	
SCA	substantially correct approach
c	candidate
SF	significant figure(s)
DP	decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	
BOD	
WR	
FB	

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAME

MAME Q	Solution	Marks	Total	Comments
1(a)	1(.1)+2(.4)+3(.4)+4(.1)=2.5	E1	1	OE; AG
(b)	$E(X^2) = 6.9$	B1		PI by full correct calculation
	$V(X) = 6.9 - 2.5^2 = 0.65$	M1A1	3	NMS 3/3
	Total		4	
2(a)(i)	f(-1) = 0	B1	1	
			_	
(ii)	x+1 is a factor	B1	1	Allow if $x + 1$ used as a factor in (b)
(b)	$f(x) = (x+1)(x^2-16)$	M1A1		M1 for attempt at division
(0)				M1 for attempt at division
	= $(x+1)(x+4)(x-4)$	A2	4	Alt Repeated search (PI):
				$f(4) = 0 \qquad B1$
				f(-4) = 0, B1
	Total		6	complete factorisation B2
3(a)	$\sqrt{2}\left(3\sqrt{2}+4\right) = 6 + 4\sqrt{2}$	B1B1	2	
(b)	Multiplying N and D by $3\sqrt{2} + 4$	M1		
	Numerator correct	A1F		ft wrong answer in (a); allow ft even if <i>p</i> , <i>q</i> not integers
	Denominator 2	A1	3	anow it even if p, q not integers
	Total		5	
4(a)	Median between 10th & 11th	M1		Allow 10th or 11th
	Median 27 (km) LQ 14 or 15 (km)	A1 B1		or any value between 14 and 15
	UQ 35 (km)	B1 B1	4	Allow AWRT 35
		_	-	
(b)	Median correct on box plot	B1F		ft reasonable values found in (a)
	Quartiles correct on box plot	B1F	2	ditto
	Whiskers to 2.5 or 3 and to 48.5 or 48	B1	3	If no clear linear scale drawn (max 2): B1F All five points shown in roughly
				correct positions
				B1F All five numerical values shown
	Eq. mapping $= 260 (lm)$	D 1		
(c)	Est. mean = 260 (km) Est. variance = 15 600 (km^2)	B1 B1	2	
	Est. variance = 15 600 (km)	ы	2 9	
	Totai		"	

MAME (c	ont)
---------	------

MAME (cor Q	Solution	Marks	Total	Comments
5(a)	At P, Q, $\frac{1}{2}x + 4 = 2x^2 - 3$	M1		
	So $4x^2 - x - 14 = 0$	A1	2	convincingly shown (AG)
(b)	Method for solving quadratic	M1		not verification
	$x = 2$ or $x = -\frac{7}{4}$	A1		
	P is (2, 5)	A1	3	NMS Allow 1/3 for (2, 5); ft wrong <i>x</i> coordinates provided one positive and one negative
(c)	Gradient of given line is $\frac{1}{2}$	B1		РІ
	Perpendicular gradient is – 2	B1F		ft wrong value for grad PQ
	Correct form for eqn of line	M1		with c's grad (not $\frac{1}{2}$)
	Equation is $y-5 = -2(x-2)$	A1F	4	OE; ft wrong grad (not $\frac{1}{2}$) and/or
				coordinates
	Total		9	
6(a)(i)	P(SI) = 0.3	B1	1	
(ii)	$P(S1 \& A) = 0.3 \times 0.2 = 0.06$	B1F	1	ft wrong answer to (i)
(iii)	$P(SI' \& A) = 0.7 \times 0.4$ P(A) = 0.06 + 0.28 = 0.34	M1 A1	2	M1 for reasonable attempt convincingly shown (AG)
	1(1) = 0.00 + 0.20 = 0.07	111		continentity shown (100)
(b)	Cond prob with N or D correct	M1		where $0 \le N \le D \le 1$
	Numerator 0.06	A1F		ft wrong answer to (a)(ii)
	Denominator 0.34	A1	3	
	Total		7	

MAME (cont)

7(a)(i) $n = 5 \Rightarrow$ total score 600M1M1M1 for reasonable attempt $(5 \times 98) + 110 = 6 \times 100$ A12with conclusion drawn (AG)(ii)Variance $= \left(\frac{\sum x^2}{n}\right) - \text{mean}^2$ M1formula stated or used $8^2 = \frac{\sum x^2}{5} - 98^2$ m1correct substitution or verification (n $\sum x^2 = 5(8^2 + 98^2) = 48340$ A13(b)(i)New $\sum x^2 = 48340 + 110^2$ M1 = 60440A12(ii)Var $= \frac{60440}{6} - 100^2$ (= 73.3)m1SD = 8.56A12Allow AWRT 8.56Total98(a)(i) $y' = 1 - 9x^2$ m1(ii)At P, 1 = 9x^2m1So $x = \frac{1}{3}$ convincingly shownA12(b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4 (+c)$ M1A12(iii)Area $= \frac{1}{2}(\frac{1}{3})^2 - \frac{3}{4}(\frac{1}{3})^4$ m1at least one term correct	Q	Solution	Marks	Total	Comments
(ii) Variance $=\left(\frac{\sum x^2}{n}\right)$ - mean ² M1 formula stated or used $8^2 = \frac{\sum x^2}{5} - 98^2$ m1 correct substitution or verification (n $\sum x^2 = 5(8^2 + 98^2) = 48340$ A1 3 convincingly shown (AG) (b)(i) New $\sum x^2 = 48340 + 110^2$ M1 $\dots = 60440$ A1 2 (ii) Var $= \frac{60440}{6} - 100^2 (\approx 73.3)$ m1 $\text{SD} \approx 8.56$ A1 2 Allow AWRT 8.56 50 10 10 10 10 10 10 10 1	7(a)(i)	$n = 5 \Longrightarrow$ total score 600	M1		M1 for reasonable attempt
$8^{2} = \frac{\sum x^{2}}{5} - 98^{2}$ $\sum x^{2} = 5(8^{2} + 98^{2}) = 48340$ A_{1} $Correct substitution or verification (normalized for the convincingly shown (AG))$ $(b)(i) New \sum x^{2} = 48 \ 340 + 110^{2}$ A_{1} A_{1} $Correct substitution or verification (normalized for the convincingly shown (AG))$ $(b)(i) Var = \frac{60440}{6} - 100^{2} \ (\approx 73.3)$ m_{1} $SD \approx 8.56$ M_{1} A_{1} $Correct substitution or verification (normalized for the convincingly shown (AG))$ m_{1} $SD \approx 8.56$ M_{1} A_{1} $Correct substitution or verification (normalized for the converse of the co$		$(5 \times 98) + 110 = 6 \times 100$	A1	2	with conclusion drawn (AG)
$\sum x^{2} = 5(8^{2}+98^{2}) = 48340$ A1 3 convincingly shown (AG) (b)(i) New $\sum x^{2} = 48340 + 110^{2}$ A1 A1 2 (ii) Var $= \frac{60440}{6} - 100^{2} (\approx 73.3)$ M1 A1 2 Allow AWRT 8.56 Total 9 8(a)(i) $y' = 1 - 9x^{2}$ M1A1 2 M1 if at least one term correct (ii) At P, $1 = 9x^{2}$ M1A1 2 AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^{2} - \frac{3}{4}x^{4}(+c)$ M1A1 2 M1 if at least one term correct M1A1 2 M1 if at least one term correct M1A1 2 M1 if at least one term correct (b)(i) $\int y dx = \frac{1}{2}x^{2} - \frac{3}{4}x^{4}(+c)$ M1A1 2 M1 if at least one term correct	(ii)		M1		formula stated or used
(b)(i) New $\sum x^2 = 48\ 340\ +110^2$ MI MI A1 2 (ii) Var $= \frac{60440}{6} -100^2\ (\approx 73.3)$ m1 A1 2 Allow AWRT 8.56 10 SD ≈ 8.56 10 $A1$ 2 Allow AWRT 8.56 10 M1 A1 2 M1 if at least one term correct (ii) $y'=1-9x^2$ M1A1 2 M1 if at least one term correct (iii) At P, $1=9x^2$ m1 OE; m1A0 for verification So $x = \frac{1}{3}$ convincingly shown A1 2 AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4(+c)$ M1A1 2 M1 if at least one term correct		$8^2 = \frac{\sum x^2}{5} - 98^2$	m1		correct substitution or verification (m1A0)
$\begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		$\sum x^2 = 5(8^2 + 98^2) = 48340$	A1	3	convincingly shown (AG)
(ii) $Var = \frac{60440}{6} -100^2 (\approx 73.3)$ m1 A1 2 Allow AWRT 8.56 8(a)(i) $y'=1-9x^2$ M1A1 2 M1 if at least one term correct (ii) At P, $1=9x^2$ m1 OE; m1A0 for verification So $x = \frac{1}{3}$ convincingly shown A1 2 AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4 (+c)$ M1A1 2 M1 if at least one term correct	(b)(i)				
SD ≈ 8.56 A12Allow AWRT 8.56Total98(a)(i) $y'=1-9x^2$ M1A12M1 if at least one term correct(ii)At P, $1=9x^2$ m1OE; m1A0 for verificationSo $x = \frac{1}{3}$ convincingly shownA12AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4 (+c)$ M1A12M1 if at least one term correct		= 60440	A1	2	
Total98(a)(i) $y'=1-9x^2$ M1A12M1 if at least one term correct(ii)At P, $1=9x^2$ m1OE; m1A0 for verificationSo $x = \frac{1}{3}$ convincingly shownA12AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4(+c)$ M1A12M1 if at least one term correct	(ii)	$Var = \frac{60440}{6} - 100^2 \ (\approx 73.3)$	m1		
8(a)(i) $y'=1-9x^2$ M1A12M1 if at least one term correct(ii)At P, $1=9x^2$ m1OE; m1A0 for verificationSo $x = \frac{1}{3}$ convincingly shownA12AG but condone no mention of \pm (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4 (+c)$ M1A12M1 if at least one term correct			A1		Allow AWRT 8.56
(ii) At P, $1 = 9x^2$ So $x = \frac{1}{3}$ convincingly shown (b)(i) $\int y dx = \frac{1}{2}x^2 - \frac{3}{4}x^4 (+c)$ M1A1 2 M1 if at least one term correct	9 (a)(i)		M1A1		M1 if at least one tame compat
(b)(i) So $x = \frac{1}{3}$ convincingly shown A1 2 AG but condone no mention of \pm M1A1 2 M1 if at least one term correct	o(a)(1)	y = 1 - 9x	MIAI	2	in at least one term correct
(b)(i) $\int y dx = \frac{1}{2} x^2 - \frac{3}{4} x^4 (+ c)$ M1A1 2 M1 if at least one term correct	(ii)	At <i>P</i> , $1 = 9x^2$	m1		OE; m1A0 for verification
		So $x = \frac{1}{3}$ convincingly shown	A1	2	AG but condone no mention of \pm
(ii) Area $=\frac{1}{2}\left(\frac{1}{3}\right)^2 - \frac{3}{4}\left(\frac{1}{3}\right)^4$ m1 at least one term correct	(b)(i)	$\int y \mathrm{d}x = \frac{1}{2} x^2 - \frac{3}{4} x^4 (+ c)$	M1A1	2	M1 if at least one term correct
	(ii)	Area $=\frac{1}{2}\left(\frac{1}{3}\right)^2 - \frac{3}{4}\left(\frac{1}{3}\right)^4$	ml		at least one term correct
$\dots = \frac{5}{108}$ A1 2 Allow NMS: AWRT 0.0463		$\dots = \frac{5}{108}$	A1	2	Allow NMS: AWRT 0.0463
(iii) Integral = 0 Two regions have equal area Below axis \Rightarrow negative Below axis \Rightarrow negati	(iii)	Two regions have equal area	E1	3	ft numerical errors in (i) and (ii)
				14	
Total 11 Total 60					