GCE 2005 January Series

Mark Scheme

Mathematics A

(MAD1)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

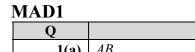
COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme


M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for met	thod and accuracy
E	mark is for	explanation
\checkmark or ft or F	follow throu	ugh from previous
		incorrect result
CAO	cc	orrect answer only
AWFW	anything	which falls within
AWRT	anythin	g which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		0) accuracy marks
- <i>x</i> EE	deduct x ma	arks for each error
NMS		no method shown
PI		possibly implied
	substantially	
c	- 	candidate
	sij	
	······	

Abbreviations used in Marking

deducted <i>x</i> marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
work replaced by candidate
formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Q	Solution	Marks	Total	Comments
1(a)	<i>AB</i> 8	M1		SCA
	<i>IH</i> 9	A1		HI second
	CD 10			SC (Prims Max 3/6)
	<i>EF</i> 11			1(a) B1 8 edges
	<i>BE</i> 13			1(b) B1 107
	<i>BC</i> 14			1(c) B1 MST
	(not AF)			
	(not DE)	A1		May be implied
	<i>DI</i> 20			
	<i>HG</i> 22	A1	4	All correct
(b)	Total 107	B1	1	
(c)	C D I			
		DIE		
	B E H	B1F	1	(Must be 8 edges)
	A F G			
	Total		6	
	Total		v	

Q	Solution	Marks	Total	Comments
2(a)	$ \begin{array}{c} $	M1A1	2	
(b)	Initial Path A - U, B - V, D - R, E - T C - R + D - S \therefore Match (AU, BV, CR, DS, ET)	M1 A1 B1	3	Using initial match, starting from <i>S</i> or <i>C</i> (or $S - D + R - C$)
(c)	S can only be with D ∴ Impossible	E1	1	or 3 boys $ABC \neq 2$ girls UV
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)(i)	<u>_ </u>			
	X Star Bar	M1		SCA
		111		SCA
	BLA BE			
		A1		Correct at M
	E 80			
		M1		3 values at S
		M1		3 values at X
	20 FB			
				<i>R</i> and <i>I</i> correct
		A1		K and T correct
	24			
	$ - \setminus $			
	\sim	B1	6	120 at <i>X</i>
	0			
(ii)	Route NUMBERSIX	B1	1	or reverse order
(iii)	New min using YIX	M1		Either route for 125
	· · · · · · · · · · · · · · · · · · ·	A 1	^	CAO.
	\therefore extra = 5	A1	2	CAO
(b)	Odd vertices N, A, I, X	M1		
	Min NA + IX = 65	A1		
	No other pairings quicker	E1		
	: total time 790 (secs)	B1	4	
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)(i)	A G C V B A = 13 + 5 + 4 + 9 + 11			
	= 42 (km)	B1	1	
(ii)	A V C G B A	M1		Tour
	8 4 5 11 11	M1		Visits all vertices
		A1		Correct order
	= 39(km)	B1	4	
(b)(i)	Delete A	M1		MST – 3 edges
(~)(!)	(4+5+9)(+(8+10))	A1		Correct MST or $(4 + 5 + 9) + 16 = 34$
	$= 36(\mathrm{km})$	B1	3	
(ii)	Delete G	M1		MST – 3 edges
(11)	(4+9+8)+(5+6)	A1		Correct MST or $(4+9+8) + 10 = 31$
	= 32(km)	B1	3	
	$36 \leq T \leq 39$	B1FB1F	2	$34 \le T \le 39$
(c)	$30 \ge 1 \ge 39$	DIFDIF	2	$34 \ge 1 \ge 39$
				Their(max(b)) $\leq T \leq$ Their(min(a))
	Total		13	

Q	Solution	Marks	Total	Comments
5(a)	At least $30 \& 60$ In total ≤ 200	B1		
	Area $2x + 3y \ge 300$	B1		
	$\begin{array}{c} \text{Cost } 40x + 12y \le 3600 \\ 10x + 3y \le 900 \end{array} \right\}$	B1		
	y at least 150% x	B1	4	(strict)
(b)	300 280 260 240 220 200 180 140 140 1000 1000 100 100 100 100 100 100 100	B1 B1×4 B1	6	x = 30, y = 60 other lines region
(c)	$y \ge 60$	B1	1	
(d)	P = 4x + 5y			
	Max at A	M1		Considering extreme point(s)
	$ \begin{array}{c} x = 30 \\ y = 170 \end{array} $	A1		
	<i>P</i> = 970	B1	3	
	Total		14	

Q	/	n		Marks	Total	Comments	
6(a)	N K	A	(Print)		M1		SCA
	5			(10)			
	0			(20)			
		1		(30)			
	1			(40)			- st
	2		(1)	(50)	A1		1 st pass
	2	0		(60) (30)			
	2	0		(40)			
	2		(0)	(40)	A1		2 nd pass
	1		(•)	(60)			
		1		(30)			
	3			(40)			
			(1)	(50)	A1	4	3 rd pass
	0			(60)			
		Print 1, 0	, 1				AG
(b)	N K	A	Print				
(6)	11 N	71	1 mit				
	0				M1		Trace starting with $N = 1$
	-	1					
	1		1				
	5						
	Continues a	s above					
		Print 1, 1,	0, 1		A1	2	CAO
(c)		K = 0			M1		Trace starting with $N = 40$
	20	K = 2					
	10	K = 3					
	5	K = 4					
	2 1	K = 5 $K = 6$			A1	2	САО
	1	V – (,	Total	AI	8	
				Total		60	
				10(41		00	