GCE 2004 November Series

Mark Scheme

Mathematics A (MAS1/W)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one	or more M marks and is for method
A	mark is dependent on M or	r m marks and is foraccuracy
B	mark is independent of M	or m marks and is formethod and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		
- <i>x</i> EE		deduct <i>x</i> marks for each error
NMS		no method shown
PI		possibly implied
SCA		substantially correct approach
c		candidate
SF		significant figure(s)
DP		decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	mark as in scheme zero marks unless specified otherwise
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAS1/W

Q	Solution	Marks	Total	Comments
1(a)(i)	Any sensible statement that indicates:			
	not random	B1		
	Any sensible statement that indicates:			
	not representative	B1	2	
(ii)	Sampling frame is not defined			
	Strata are not defined			
	Random selection is not possible		_	
	Any sensible alternatives	B2,1	2	
(U)	Number members from $(000)1 \pm 7885$	D1		an aminglant
	(000)0 to 7884 of (000)1 to 7883	DI		or equivalent
	Obtain 100 (consecutive) A digit			
	random numbers	B 1		
		DI		
	Reject repeated numbers or numbers			
	above $7884/7885$ [&(000)0]	B 1	3	Fither: or equivalent
			5	
	Total		7	
2(a)	Profit = Sales - Cost + Refund	MI		Use of at least (Sales – Cost)
	$\cdot B = 2.205$ (20×1.00)	A 1		2.25 20. an aminutant
	$(20 - 3) \times 0.20$	AI	2	2.25 - 20; or equivalent
	$+(20-3)\times 0.20$	AI	3	4 – 0.25; or equivalent
	=2S-16			AG
(h)	$E(P) = 2 \times E(S) = 16 = 514.00$	D1		CAO accent 14 (ignore units)
(U)	$E(T) = 2 \times E(S) = 10 - E14.00$	DI		
	$\operatorname{Var}(P) = 2^2 \times \operatorname{Var}(S)$	M1		$\operatorname{Var}(aX - b) = a^2 \times \operatorname{Var}(X)$ with $a > 1$
	=£ ² 16.00	A1		CAO; accept 16 (ignore units)
	$\operatorname{SD}(P) = \sqrt{\operatorname{Var}(P)} = \sqrt{16} = \pounds 4.00$	m1	4	use of $\sqrt{\operatorname{Var}(P)}$
	Total		7	

MAS1/W (cont)

Q	Solution	Marks	Total	Comments
3(a)	Area = 1	M1		Use of
	Area = $\frac{4 \times 2c}{2} + (2 \times 2c) + \frac{12 \times 2c}{2}$	M1		Attempt at area of (2 triangles + rectangle) or equivalent
	= 20c $\therefore 20c = 1 \implies c = 0.05$	A1	3	CAO AG
(b)(i)	P(X > 4) = P(4 < X < 6) + P(X > 6) or $= 1 - P(X < 4)$	M1		Attempt at area of (rectangle + triangle) or (1 – triangle) or equivalent
	= 4c + 12c = 1 - 4c = 0.8	A1	2	CAO; or equivalent
(ii)	P(4 < X < 12) = P(X < 12) - P(X < 4)	M1		use of; or equivalent
	$= \{(1-3c) \text{ or } (4c+4c+9c)\} - (4c)$			
	=(1-7c) or $13c$	A1		either
	=1-0.35=0.65	A1	3	CAO; or equivalent
(iii)	$P(X < 12 X > 4) = \frac{P(4 < X < 12)}{P(X > 4)}$	M1 A1		Attempt at conditional probability Correct expression
	$=\frac{(ii)}{(i)}=\frac{0.65}{0.80}$	m1		
	$=\frac{13}{16}=0.8125$	A1	4	CAO or AWFW 0.812 to 0.813
				NB Area > 4 is 16c so for conditional (M1)distribution, $c = 0.0625$ (A1)Area < 12 is 13c for this distribution (ml)Thus probability = $13 \times 0.0625 = 0.8125$ (A1)
(c)	Some delays greater than 18 minutes			
	Some appointments early			
	PDF unlikely to be linear	E1	1	
	Total		13	

MAS1/W (cont)

Q	Solution	Marks	Total	Comments
4(a)	n = 18 $p = 0.15$			
	P(Car = 2) =	M1		binomial used in (a) or (b)
	$\binom{18}{2}(0.15)^2(0.85)^{16}$	A1		correct expression
	= 0.255 to 0.256	A1	3	AWFW (0.2556)
(b)	n = 50 $p = 0.15P (5 < Car < 10) =$			
	$P(Car \le 9) - P(Car \le 5)$	M1 M1		Use of ≤ 9 or (6, 7, 8, 9) Use of $-\& \le 5$ or
				(4 correct terms added)
	= 0.7911 - 0.2194 = 0.571 to 0.572	A1	3	AWFW (0.5717)
(c)	n = 900 p = 0.15 $\mu = 900 \times 0.15 = 135$	B1		CAO
	$\sigma^2 = 900 \times 0.15 \times 0.85 = 114$ to 115	B1		114.75 ($\sigma = 10.65$ to 10.75 AWFW)
	$P(Car \le 150) = P(Car < 150.5)$	B1		+ 0.5
	$= P\left(Z < \frac{150.5 - 135}{\sqrt{114.75}}\right)$	M1		standardising (149.5, 150, 150.5) using their μ & their $\sqrt{\sigma^2}$ or correct values
	$= P(Z < 1.45) = \Phi(1.45)$			
	= 0.926 to 0.927	A1	5	AWFW (0.92647)
(d)	p not 0.15 (value for cars, not all vehicles)			
	Vehicles not independent	E1	1	
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$\hat{\mu} = \bar{x} = \frac{1}{n} \sum x = \frac{1040}{100} = 10.4$	B1		САО
	$\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$	M1		use of; or use of $\frac{n}{n-1}v$ or v
	$=\frac{1}{99}\left(11102.11-\frac{1040^2}{100}\right)=2.89$	A1	3	CAO ($v = 2.8611$) ($\sqrt{v} = 1.69148$)
(b)	CI: $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$	M1		Use of with $n > 1$
	$99\% \Rightarrow z = 2.5758$	B1		AWFW 2.57 to 2.58
	:. $10.4 \pm 2.5758 \times \frac{1.7}{\sqrt{100}}$:. 10.4 ± 0.44	A1√		$$ on (a) providing $\overline{x} \neq 1040$, & on z, not on n
	i.e. (9.96, 10.8)	Aldep	4	AWRT; dependent on ÷ by 99 in part (a) unless subsequently corrected
(c)	Length, $X \sim$ Normal	E1	1	
(d)	Require to subtract 0.2 from each CL ∴ (9.76, 10.6)	M1 A1√	2	subtract/add 0.2 from/to each CL $$ on (b); AWRT
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)(i)	$Mean = \mu = 4c$	B1		CAO
	Variance = $\sigma^2 = 3c^2$	B1	2	CAO
(ii)	$E(X^{2}) = Var(X) + (E(X))^{2}$ = $3c^{2} + (4c)^{2}$	M1 A1√	2	use of or equivalent
	$= 19c^{2}$	111 1	2	AG
	-1)c			
(b)	$19c^2 = 171$			
	$\therefore c=3$	B1	1	САО
(c)(i)	$P\left(X > \frac{\mu}{2} + \frac{\sigma}{\sqrt{3}}\right) = P(X > 6 + 3)$			
	= P(X > 9)	B1		CAO
	$=\frac{7c-9}{6c}$ or $1-\frac{9-c}{6c}$	M1		attempt at correct area
	$=\frac{2}{3}=0.67$	A1	3	CAO/AWRT
	5			
(ii)	P(X < d) = 0.25			
	$P(X < d) = \frac{d - c}{6c} = \frac{d - 3}{18}$	M1		attempt at correct area and substitution of their value of c
	$\therefore \frac{d-3}{18} = 0.25$	m1		Equating their expression in d to 0.25
	$\therefore d = 7.5$	A1	3	CAO
	Total		11	
	Total		60	