GCE 2004 November Series

Mark Scheme

Mathematics A
 (MAP1)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website:
www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]
Key to Mark Scheme

Abbreviations used in Marking

Application of Mark Scheme

No method shown:

Correct answer without working..mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially
correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MAP1

Q	Solution	Marks	Total	Comments
1(a) (b)	Sector area formula stated Area $=15\left(\mathrm{~cm}^{2}\right)$ Arc length formula stated Length of one arc $=3(\mathrm{~cm})$ Perimeter $=16(\mathrm{~cm})$	M1 A1 M1 A1 A1F	2 3	or used Allow AWRT 14.9 or 15.0 or used Allow AWRT 15.9 or 16.0 ft one small error
(b)	Total		5	
2(a)(i)	f is odd (reason)	E2, 1	2	E1 for partial reason
(ii)	Period is π	B1	1	Allow 180
(b)(i)	Equation is $(y=) 3 \sin 2 x$	B2, 1	2	B1 for e.g. $y=3 \sin x$
(ii)	Attempt to replace x by $x \pm \frac{\pi}{2}$	M1		
	Equation is $(y=) 3 \sin 2\left(x-\frac{\pi}{2}\right)$	A1F	2	OE; ft wrong answer to (i)
	Total		7	
3(a)(i)	$\begin{aligned} & y^{\prime}=1-25 x^{-2} \\ & y^{\prime \prime}=50 x^{-3} \end{aligned}$	M1A1 m1A1F	4	M1 if at least one non-zero term correct ml for $k x^{-3}$; ft numerical error in y^{\prime}
(ii)	At SP $25 x^{-2}=1$ SP is $(5,110)$	m1 A1A1	3	
(iii)	At SP $y^{\prime \prime}=0.4$ So SP is a minimum	$\begin{aligned} & \mathrm{A} 1 \mathrm{~F} \\ & \mathrm{E} 1 \mathrm{~F} \end{aligned}$	2	ft numerical error in $y^{\prime \prime}$ ft wrong value of $y^{\prime \prime}$ at SP
(b)	Min occurs at $x=5$	B1F		ft wrong x value at SP
	Min cost is $£ 11000$	B1F	2	ft wrong y value at SP ; units needed here
	Total		11	

MAP1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	Values 8, 32 Verification of $u_{3}=128$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	AG
(ii) (iii)	Ratio is 4	B1	1	Condone "ratio is $1: 4$ "
	Formula for sum of GP stated $S_{n}=\frac{8\left(4^{20}-1\right)}{4-1}$	M1 m1		or used Condone one wrong substitution here
	$\ldots=\frac{8}{3}\left(4^{20}-1\right)$	A1	3	convincingly shown (AG)
(b)(i) (ii)	$v_{1}=\log _{2} 8=3$	B1	1	OE; AG but accept assertion that $\log _{2} 8=3$
	Use of at least one log law Use of $\log _{2} 4=2$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~m} 1 \end{aligned}$		
	$v_{n}=1+2 n$	A1	3	convincingly shown (AG)
	Total		10	
5(a)	$\tan x=\frac{\sin x}{\cos x}$ Multiplying both sides by $\cos x$ $\sin x(\cos x-x)=0$	M1 m1 A1	3	stated or used in equation $\sin x=x \tan x$ Convincingly shown (AG)
(b) (c)	$\sin x \neq 0$ at P, \quad so $\cos x-x=0$	E1	1	
	Condition not necessary (reason)	E2,1	2	$x=0$ or $\sin x=0$ must be mentioned for E2; E1 if 'not necessary' clearly explained
(d)(i)	$\mathrm{f}(0.7) \approx 0.065, \mathrm{f}(0.8) \approx-0.103$	B1B1		OE; B1 for each value condone 0.06 or 0.07 and -0.1
	Sign change, so root between	E1	3	OE
(ii)	Attempt to find $f(0.75)$	M1		This must be the first new calculation shown
	$\mathrm{f}(0.75) \approx-0.018$ so root is closer to 0.7	A1	2	Condone AWRT - 0.02
	Total		11	

MAP1 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Intersections (ln 3, 0), (0, - $)^{\text {) }}$	B1B1	2	Allow AWRT 1.10 or 1.09 for $\ln 3$
(b)(i)	$\int y \mathrm{~d} x=\mathrm{e}^{x}-3 x(+c)$	B1B1	2	B1 for each term
(ii)	Substitution of $x=\ln 3$	M1		in c's integral (not y or y^{\prime})
	Answer 2-3 $\ln 3$	A1	2	Allow AWRT - 1.30
(iii)	$\ldots \approx-1.30$, so area is +1.30	E1	1	AG, condone vagueness provided -1.30 seen
(c)(i)	Range of f is $\mathrm{f}(x)>-3$	B1	1	Allow any symbol for $\mathrm{f}(x)$; condone \geqslant
(ii)	Domain of f^{-1} is $x>-3$	B1F		ft wrong answer to (ii); any symbol
	Range is all real numbers	B1	2	
(iii)	$\ln z$ appearing in solution			Where z is any function of x or y; not $1 \mathrm{ln}^{z}$
	Complete correct method	m1		
	$\mathrm{f}^{-1}(x)=\ln (x+3)$	A1	3	NMS $3 / 3$, or $2 / 3$ for $\ln x+3$
(d)(i)	Sketch of modulus function	B1	1	
(ii)	Attempt to reflect in x-axis	M1		Only for $x<\ln 3$
	All clear and correct	A1	2	with sharp point and correct curvature; condone wrong shape as $x \rightarrow-\infty$
			16	
			60	

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

