GCE 2004 June Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Mathematics A Unit MAS4/W

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

Abbreviations used in Marking

Application of Mark Scheme

No method shown:

Correct answer without working..mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work

> Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MAS4/W

Q			lution		Marks	Total	Comments
1(a)	Rank	Judge 1	Judge 2	Rank			
	3	46	56	1			
	5	42	47	3			
	8	33	35	7	M1		Ranking
	1	57	32	8			
	5	42	51	2	A1		
	7	38	45	4			
	2	54	40	5			
	5	42	38	6			
	$\sum d$	$=4+4$	1+49 +	$+9+9+1$	M1		
			$=86$		A1		Accept r on ranks
		$1-\frac{6 \times 8}{8 \times 6}$	$=-0.0$		A1	5	-0.0488
	D, C, H, G, F, B, E, A				B2	2	Accept in reverse order
(c)	Difficult to choose winner No correlation between 1 and 2 3 totally disagrees with 2				E1		
					E1	2	
				Total		9	

MAS4/W (Cont)

Q	Solution	Marks	Total	Comments
2(a)	$S x y=1335-\frac{52 \times 225}{8}=-127.5$	B1		
	$S x x=380-{\frac{52^{2}}{8}}^{2}=42$	B1		
	$S y y=7007-\frac{225^{2}}{8}=678.875$	B1		
	$r=\frac{-127.5}{\sqrt{42 \times 678.875}}=-0.755$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	5	
(b)	$\mathrm{H}_{0}: p=0 \quad \mathrm{H}_{1}: p<0$	B1		Both
	C.V (2.5\%) $=-0.7067$	B1		
	$-0.755<-0.7067$	M1		Comparing
	\Rightarrow Reject H_{0} so implying $p<0$	A1	4	
(c)	Increase foot patrols to reduce crime	E1 \checkmark	1	
	Total		10	
3(a)	$\mathrm{E}(p)=\theta, \operatorname{Var}(p)=\theta \frac{(1-\theta)}{n}$	B1, B1	2	
(b)	n is $1 \operatorname{arge}(\geq 30)$	B1		
	p not small or not large			
	$(0.1<p<0.9)$	B1	2	
(c)	0.9×0.1	B1		Z
	$0.9 \pm 1.96 \sqrt{200}$	M1		$\}$ variance
		A1		
	$(0.858,0.942)$	A1	4	
	Total		8	

MAS4/W (Cont)

MAS4/W (Cont)

Q	Solution	Marks	Total	Comments
5(a)	$\mathrm{H}_{0}: P_{m}-P_{E}=0 \quad \mathrm{H}_{1}: P_{m}-P_{E} \neq 0$	B1		Both
	$\operatorname{Var}(\operatorname{diff})=\frac{0.49 \times 0.51}{200}+\frac{0.37 \times 0.63}{200}$	M1		Accept pooling
	$Z_{\text {calc }}=\frac{0.12-0}{}=2.4419$	M1		$z=2.424$
	0.04914...	A1		
	$Z_{\text {calc }}=\frac{0.12-0}{0.04914 \ldots}=2.4419$	B1		Condone absence of minus (looking at upper tail)
	\Rightarrow Reject H_{0}. The proportions are not the same at the 5% level.	A1 \checkmark	6	
(b)(i)	$0.12 \pm 2.5758 \times 0.04914$	M1		
	$(-0.0066,0.2466)$	A1	2	Accept ($-0.0065,0.2465$)
(ii)	The conclusion would be different,	E1		
	since zero lies in the C.I. found in (b)	E1	2	
	Total		10	

MAS4/W (Cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\sigma^{2}=\mathrm{E}\left(X_{i}^{2}\right)-\mu^{2}$			
	$\Rightarrow \mathrm{E}\left(X_{i}^{2}\right)=\sigma^{2}+\mu^{2}$	B1		
	$\begin{aligned} & \operatorname{Var}(\bar{X})=\mathrm{E}\left(\bar{X}^{2}\right)-\mu^{2}=\frac{\sigma^{2}}{n} \\ & \Rightarrow \mathrm{E}\left(\bar{X}^{2}\right)=\frac{\sigma^{2}}{n}+\mu^{2} \end{aligned}$	B1	2	
(ii)	$n V=\sum_{1}^{n} X_{i}^{2}-n \bar{X}^{2}$			
	$\Rightarrow \mathrm{E}(n V)=\mathrm{E}\left(\sum_{1}^{n} X_{i}^{2}\right)-\mathrm{E}\left(n \bar{X}^{2}\right)$	M1		
	$\begin{aligned} & =n\left(\sigma^{2}+\mu^{2}\right)-\left(\sigma^{2}+n \mu^{2}\right) \\ & =(n-1) \sigma^{2} \end{aligned}$	M1		
	$\Rightarrow \mathrm{E}\left(\frac{n V}{n-1}\right)=\sigma^{2}$	A1	3	AG
(b)	$S^{2}=\frac{2700}{10}-\left(\frac{150}{10}\right)^{2}$	M1		
	$=270-225$			
	$=45$	A1		
	$\sigma^{2}=\frac{10}{9} \times 45$			
	$=\frac{450}{9}$			
	$=50$	A1	3	
	Total		8	
	Total		60	

