**GCE 2004** June Series



# Mark Scheme

## Mathematics A Unit MAS3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

## Key to Mark Scheme

| M                       | mark is for              | method                                     |
|-------------------------|--------------------------|--------------------------------------------|
| m                       | mark is dependent on one | e or more M marks and is for method        |
| A                       | mark is dependent on M   | or m marks and is foraccuracy              |
| B                       | mark is independent of N | f or m marks and is formethod and accuracy |
| Е                       | mark is for              | explanation                                |
| $\checkmark$ or ft or F |                          | follow through from previous               |
|                         |                          | incorrect result                           |
| САО                     |                          | correct answer only                        |
| AWFW                    |                          | anything which falls within                |
| AWRT                    |                          | anything which rounds to                   |
| AG                      |                          | answer given                               |
| SC                      |                          | special case                               |
| OE                      |                          | or equivalent                              |
| A2,1                    |                          |                                            |
| <i>-x</i> EE            |                          | deduct <i>x</i> marks for each error       |
| NMS                     |                          | no method shown                            |
| PI                      |                          |                                            |
| SCA                     |                          | substantially correct approach             |
| c                       |                          |                                            |
| SF                      |                          | significant figure(s)                      |
| DP                      |                          | decimal place(s)                           |
|                         |                          | 1 ()                                       |

## Abbreviations used in Marking

| MC – <i>x</i> |                            |
|---------------|----------------------------|
| MR – <i>x</i> |                            |
| ISW           | ignored subsequent working |
| BOD           |                            |
| WR            | work replaced by candidate |
| FB            | formulae booklet           |

## **Application of Mark Scheme**

| No method shown:<br>Correct answer without working<br>Incorrect answer without working                                                                        | mark as in scheme<br>zero marks unless specified otherwise                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| More than one method/choice of solution:<br>2 or more complete attempts, neither/none<br>crossed out<br>1 complete and 1 partial attempt, neither crossed out | mark both/all fully and award the mean mark<br>rounded down<br>award credit for the complete solution only |
| Crossed out work                                                                                                                                              | do not mark unless it has not been replaced                                                                |
| Alternative solution using a correct or partially correct method                                                                                              | award method and accuracy marks as appropriate                                                             |

### MAS3

| Q      | Solution                                                                                      | Marks     | Total | Comments                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------|
| 1(a)   | Likely to adjust amount as she goes along/ measures not independent.                          | E1        | 1     |                                                                                                                       |
| (b)    | $\hat{\mu} = \bar{x} = \frac{473}{9} = 52.6$                                                  | B1        |       | awrt                                                                                                                  |
|        | $\hat{\sigma}^2 = s^2 = \frac{24935}{8} - \frac{(473)^2}{8 \times 9} = 9.53$                  | M1        |       |                                                                                                                       |
|        |                                                                                               | A1        | 3     | awrt; if error in $s^2$ from rounding $\overline{x}$ to<br>4 or 5 sf, lose 1 mark here, then full<br>marks available. |
| (c)(i) | Assume that weights of flour are normally distributed.                                        | E1        |       |                                                                                                                       |
|        | v = 9 - 1 = 8                                                                                 | B1        |       | cao; award here or in (ii)                                                                                            |
|        | Critical value of <i>t</i> is 1.86                                                            | B1        |       | cao                                                                                                                   |
|        | Confidence limits are                                                                         |           |       |                                                                                                                       |
|        | $52.6 \pm 1.860 \sqrt{\frac{9.53}{9}}$                                                        | M1<br>A1√ |       | allow z; M1 if not divided by 9. $$ on (b)                                                                            |
|        | giving (50.6 to 50.7, 54.4 to 54.5)                                                           | A1        | 6     | cao                                                                                                                   |
| (ii)   | v = 8<br>$\chi^2_{0.05} = 2.733; \ \chi^2_{0.95} = 15.507$<br>Confidence limits are           | B1        |       | cao; both                                                                                                             |
|        | $\frac{8 \times 9.53}{15.507}$ and $\frac{8 \times 9.53}{2.733}$                              | M1<br>A1√ |       | $\checkmark$ on $\chi^2$ values                                                                                       |
|        | (4.92, 27.9)                                                                                  | A1        |       | cao                                                                                                                   |
|        | Confidence interval for $\sigma$ is (2.22, 5.28)                                              | A1√       | 5     | $\checkmark$ on CI for variance                                                                                       |
| (d)    | The whole of the CI for $\mu$ is above 50;                                                    | E1        |       |                                                                                                                       |
|        | Standard deviation seems to be more<br>than 2 grams.<br>Not very useful as Emma overestimates | E1        | 2     | Reference to CIs required with some assessment.                                                                       |
|        | and her measures are rather variable.                                                         |           | 17    |                                                                                                                       |
|        | IUtai                                                                                         |           | 1/    |                                                                                                                       |

#### MAS3 (Cont)

| Q           | Solution                                                                        | Marks | Total | Comments                                          |
|-------------|---------------------------------------------------------------------------------|-------|-------|---------------------------------------------------|
| <b>2(a)</b> | $H_0$ : Median score = 50                                                       |       |       |                                                   |
|             | H <sub>1</sub> : Median score $\neq 50$                                         | B1    |       | both; must refer to average.                      |
|             | Differences from 50 are:<br>+ $8-2-10-12+4+1-16+13-11+9$                        | B1    |       |                                                   |
|             | Signed ranks are:                                                               | M1    |       |                                                   |
|             | +4-2-6-8+3+1-10+9-7+5                                                           | A1    |       |                                                   |
|             | $T_{+} = 22; T_{-} = 33$                                                        | A1√   |       | either; $\checkmark$ on ranks                     |
|             | Critical value of T is 8                                                        | B1    |       | cao                                               |
|             | Accept $H_0$ . Not enough evidence to say median is not 50.                     | A1√   | 7     | $\checkmark$ on $T_{\rm crit}$ and $T_{\rm calc}$ |
|             |                                                                                 |       |       |                                                   |
| (b)(i)      | First and last ranks become + 4.5                                               | B1    | 1     |                                                   |
| (ii)        | Values of $T_+$ and $T$ unchanged                                               | B1    | 1     | either                                            |
| (c)         | H <sub>0</sub> : Median of Jamie's – Samir's score<br>= $0$<br>H.: Median > $0$ | B1    |       | or equivalent;<br>both                            |
|             | Under H <sub>0</sub> $X \sim B(15, 0.5)$                                        | B1    |       | cao                                               |
|             | P(X > 12) = P(X < 3)                                                            | M1    |       |                                                   |
|             | = 0.0176                                                                        | A1    |       | cao                                               |
|             | 0.0176 < 5% so reject H <sub>0</sub> ; Evidence                                 |       |       |                                                   |
|             | suggests that Jamie scores higher than                                          |       |       |                                                   |
|             | Samir on average.                                                               | A1√   | 5     | $\checkmark$ on probability                       |
|             | Total                                                                           |       | 14    |                                                   |

#### MAS3 (Cont)

| Q           | Solution                                           | Marks | Total | Comments                               |
|-------------|----------------------------------------------------|-------|-------|----------------------------------------|
| <b>3(a)</b> | Shape of histogram similar to pdf of               |       |       |                                        |
|             | exponential distribution.                          | E1    | -     |                                        |
|             | Mean and SD approximately equal.                   | E1    | 2     |                                        |
|             | _                                                  |       |       |                                        |
| (b)(i)      | $E(T) = \frac{1}{2} = 3.33$                        | B1    | 1     | awrt                                   |
| (~)(-)      | 0.3                                                | 21    | -     |                                        |
|             |                                                    |       |       |                                        |
| (ii)        | $P(T \le 1) = F(1)$                                | M1    |       |                                        |
|             | $= 1 - e^{-0.3}$                                   |       |       |                                        |
|             | = 0.259                                            | A1    | 2     | awrt                                   |
|             |                                                    |       |       |                                        |
| (iii)       | P(T > 1.75   T > 1)                                | M1    |       | identifies correct probability.        |
|             | (1-F(1.75))                                        | A 1   |       |                                        |
|             | $=$ <u>1-F(1)</u> $\left(=$ <u>0.741</u> $\right)$ | AI    |       | numerator correct                      |
|             |                                                    |       |       |                                        |
|             | e <sup>-0.525</sup>                                |       |       |                                        |
|             | $=\frac{1}{2^{-0.3}}=0.799$                        | A1√   | 3     | on answer to (b)(ii)                   |
|             | C                                                  |       |       | B1 for $P(T < 1.75   T > 1)$ correctly |
|             |                                                    |       |       | evaluated.                             |
|             |                                                    |       |       |                                        |
| (iv)        | Let median value be $m$                            |       |       |                                        |
|             | F(m) = 0.5                                         | 271   |       |                                        |
|             | $1 - e^{-0.5m} = 0.5$                              | MI    |       |                                        |
|             | $e^{-0.3m} = 0.5$                                  |       |       |                                        |
|             | $-0.3m = \ln(0.5)$                                 | m1    |       | valid attempt to solve                 |
|             | m = 2.31                                           | A1    | 3     | cao                                    |
|             | Median time interval = $2.31$ minutes              |       |       |                                        |
|             | Total                                              |       | 11    |                                        |

#### MAS3 (Cont)

| Q       | Solution                                                                             | Marks | Total | Comments                                                     |
|---------|--------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------|
| 4(a)(i) | $s_{y}^{2}$ 1.60 1.112                                                               | M1    |       |                                                              |
|         | $\frac{x}{s_Y^2} = \frac{1.143}{1.40} = 1.143$                                       | A1    |       |                                                              |
|         | $v_1 = 10 - 1 = 9;  v_2 = 7 - 1 = 6$                                                 | B1    |       | CAO both                                                     |
|         | 90% interval so $p = 0.95$                                                           |       |       |                                                              |
|         | $F_6^9 = 4.099;  F_9^6 = 3.374$                                                      | B1    |       | CAO; either                                                  |
|         | Confidence interval given by                                                         |       |       |                                                              |
|         | $\frac{\sigma_X^2}{F_6^9} \le \frac{\sigma_Y^2}{1.143} \le F_9^6$                    | M1    |       | use of                                                       |
|         | $\sigma_x^2$                                                                         | Δ1    |       | a serve at a subsequent F                                    |
|         | $1 \int \sqrt{\sigma_{Y}^{2}} = 2.274$                                               | A1√   |       | right way round: $$ on Fs                                    |
|         | $\frac{1}{4.099} \le \frac{1}{1.143} \le 3.374$                                      | A1√   | 8     | $\checkmark$ on ratio and <i>F</i> values.                   |
|         | giving (0.279, 3.86)                                                                 |       |       | M1A1 if one CL correct.                                      |
| (ii)    | Confidence interval includes 1                                                       | E1    | 1     |                                                              |
| (b)     | H <sub>0</sub> : $\mu_X = \mu_Y$                                                     |       |       |                                                              |
|         | H <sub>1</sub> : $\mu_{y} > \mu_{y}$                                                 | B1    |       | both                                                         |
|         | Pooled estimate of variance is                                                       |       |       |                                                              |
|         | $(9 \times 1.6) + (6 \times 1.4)$                                                    | M1    |       |                                                              |
|         | $\frac{1}{15} = 1.52$                                                                | A1    |       |                                                              |
|         | $\overline{x} - \overline{y} = 1.16$                                                 | B1    |       | CAO                                                          |
|         | v = 15                                                                               | B1    |       | CAO                                                          |
|         | Critical value of $t = 1.753$                                                        | B1    |       |                                                              |
|         | Sample statistic = $\frac{1.16}{\sqrt{1.52\left(\frac{1}{10} + \frac{1}{7}\right)}}$ | M1    |       |                                                              |
|         | = 1.91                                                                               | A1√   |       | $\sqrt{v}$ on $\overline{x} - \overline{v}$ and variance     |
|         | Sample $t > t_{crit}$ so reject H <sub>0</sub> .                                     |       |       |                                                              |
|         | Evidence supports Jayne's belief.                                                    | A1√   | 9     | $\checkmark$ on sample <i>t</i> and <i>t</i> <sub>crit</sub> |
|         | Total                                                                                |       | 18    |                                                              |
|         | Total                                                                                |       | 60    |                                                              |