GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAS1/W

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

m mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy B mark is independent of M or m marks and is for method and accuracy E mark is for explanation \wedge or ft or F follow through from previous incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE	Mmark is t	or method
Bmark is independent of M or m marks and is formethod and accuracy E	m mark is o	lependent on one or more M marks and is for method
E	Amark is o	lependent on M or m marks and is foraccuracy
✓ or ft or F. follow through from previous incorrect result cAO	Bmark is i	ndependent of M or m marks and is formethod and accuracy
incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	Emark is t	orexplanation
incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	\checkmark or ft or F	follow through from previous
AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate		
AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	САО	
AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate		
SC	AWRT	anything which rounds to
OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE .deduct x marks for each error NMS no method shown PI .possibly implied SCA .substantially correct approach c .candidate	AG	answer given
OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE .deduct x marks for each error NMS no method shown PI .possibly implied SCA .substantially correct approach c .candidate	SC	special case
-x EE		
NMSno method shown PIpossibly implied SCAsubstantially correct approach ccandidate	A2,1	
PI	<i>-x</i> EE	
SCAsubstantially correct approach ccandidate	NMS	no method shown
SCAsubstantially correct approach ccandidate	PI	possibly implied
	c	
DP decimal place(s)	DP	decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	
BOD	
WR	
FB	

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAS1/W

Q		Solution	Marks	Total	Comments
1(a)	$L \sim N(10.25, \sigma)$				
	$\mathbf{P}(L < 10) = \mathbf{P}\left($	$\left(Z < \frac{10 - 10.25}{\sqrt{0.04}}\right) =$	M1		standardising (9.5, 10 or 10.5) with $(\sqrt{0.04}, 0.04 \text{ or } 0.04^2)$ and/or $(10.25 - 10)$
		P(Z < -1.25) =	A1		cao; ignore sign
		$1 - \Phi(1.25) =$ 1 - 0.89435 =	m1		area change
		0.105 to 0.106	A1	4	awfw
(b)	P(L > 10) = 0.9	8			
	$z_{0.98} = -2.0537$		B1		awfw 2.05 to 2.06; ignore sign
	Also z	$=\frac{10-10.25}{\sigma}$	M1		standardising (10 or 10.5) with 10.25 and σ ; allow (10.25 – 10)
	Thus $\frac{10}{2}$	$\frac{0-10.25}{\sigma} = -2.0537$	m1		equating <i>z</i> -term to <i>z</i> -value; not using 0.98, 0.02 or $ 1 - z $
	Thus σ	= 0.121 to 0.122	A1	4	awfw; do not ignore sign
				0	(A0 if negative sign dropped)
		Total		8	

MAS1/W(Cont)

Q	Solution	Marks	Total	Comments
2(a)	f(x)	B1		<i>x</i> -axis; (0) to 60
	<i>k</i>	B1		f(<i>x</i>)-axis; (0) to <i>k</i> or 0.025
		B1		+ve slope straight line; 0 to 40
	$0 \begin{array}{c cccc} 0 \\ \hline 0 \\ \hline 20 \\ \hline 40 \\ \hline 60 \\ x \end{array}$	B1	4	horizontal straight line; 40 to 60 (allow minor extensions) (0 for axes reversed)
				(o for unes reversed)
(b)	Area under graph $= 1$	M1		use of; may be implied by their area must be stated for $k = 0.025$ assumed
	Area = $\left(\frac{1}{2} \times 40 \times k\right) + (20 \times k)$ or	M1		area of (triangle + rectangle) [= 0.5 + 0.5 (+A1)]
	Area = $k \times \left(\frac{60+20}{2}\right)$			area of (trapezium) [= 1 (+ A1)]
	=40k	A1	3	cao; or equivalent
	(implies $k = 0.025$)			AG
(c)	At $x = 30$ height $= 0.75k$ or 0.0188	B1		$(Area = 40k \Rightarrow M0 M1 A1)$ cao/awrt or equivalent
	or $\left[\frac{kx^2}{80}\right]_0^{30}$			or equivalent
	P(X > 30) =			
	$\left(10 \times \left(\frac{0.75k+k}{2}\right)\right) + (20 \times k)$	M1		area of (trapezium + rectangle)
	or $1 - \left(\frac{1}{2} \times 30 \times 0.75k\right)$			1 – area of (triangle)
	= 28.75k or $(1 - 11.25k)$			115k/4 or $(1-45k/4)$
	= 23/32 or 0.719	A1	3	cao/awrt (0.71875)
	Total		10	

MAS1/W (Cont)

3(a)(i) Binomial $n = 25$ M1Attempted use of in part (a) cao; may be implied $P_G = \frac{88}{400} (= 0.22)$ B1cao; may be implied $P(G = 2) = \binom{25}{2} (0.22)^2 (0.78)^{23} =$ M1correct expression for B(25, p) $(0 with x = 2300 \times 0.0484 \times 0.0032974 =0.0478 to 0.048A14Awfw (0.0478787)[watch for (0.22)^2 = 0.048(4)](ii)p_B = \frac{60}{400} (= 0.15)B12ao; may be implied by correct answerP(B \le 3) = 0.4705 to 0.4715B12Awfw (0.4711(213))(iii)p_R = \frac{160}{400} (= 0.4)B1cao; may be implied by correct answeror \ge 1 correct probabilityP(8 \le R \le 12)= 0.8462 - 0.1536= 0.692 to 0.693M1use of \le 12M1(b)Number of trials/events or sample sizeor n is not fixedM14P(success) or P(Y) or p is not constantB12P(success) or P(Y) or p is not constantB12$	Q	Solution	Marks	Total	Comments
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			M1		Attempted use of in part (a)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$p_G = \frac{88}{400} (= 0.22)$	B1		cao; may be implied
0.0478 to 0.048A14Awfw (0.0478787) [watch for (0.22)² = 0.048(4)](ii) $p_B = \frac{60}{400}$ (= 0.15)B1Cao; may be implied by correct answer $P(B \le 3) = 0.4705$ to 0.4715B12Awfw (0.4711(213))(iii) $p_R = \frac{160}{400}$ (= 0.4)B1cao; may be implied by correct answer or ≥ 1 correct probability $P(8 \le R \le 12)$ $= P(R \le 12)$ M1use of ≤ 12 M1use of ≤ 12 M1 for ≥ 1 correct term M2 for 5 correct terms added use of $-$ and ≤ 7 (b)Number of trials/events or sample size or n is not fixedB1 B12B0 for n not constant or decreasing, etc accept trials/events are not independent or are dependentB0 for n not constant or decreasing, etc accept trials/events are not independent or are dependent		$P(G=2) = {\binom{25}{2}} (0.22)^2 (0.78)^{23} =$	M1		
P(B \le 3) = 0.4705 to 0.4715B12Awfw (0.4711(213))(iii) $p_R = \frac{160}{400}$ (= 0.4)B1cao; may be implied by correct answer or ≥ 1 correct probabilityP(8 \le R \le 12) = P(R \le 12)M1use of ≤ 12 M1 for ≥ 1 correct term M2 for 5 correct terms added use of $-$ and ≤ 7 (b)Number of trials/events or sample size or n is not fixed P(success) or P(Y) or p is not constantB12Awfw (0.6926(805))B12B12B0 for n not constant or decreasing, etc accept trials/events are not independent or are dependentB12			A1	4	
(iii) $p_R = \frac{160}{400} (= 0.4)$ B1cao; may be implied by correct answer or ≥ 1 correct probability $P(8 \leq R \leq 12)$ $= P(R \leq 12)$ M1use of ≤ 12 M1 for ≥ 1 correct term M2 for 5 correct terms added use of $-$ and ≤ 7 $-P(R \leq 7)$ $= 0.8462 - 0.1536$ M1use of $-$ and ≤ 7 0.692 to 0.693 A14Awfw ($0.6926(805)$)(b)Number of trials/events or sample size or <i>n</i> is not fixed P(success) or P(Y) or <i>p</i> is not constantB12 2 B0 for <i>n</i> not constant or decreasing, etc accept trials/events are not independent or are dependent	(ii)	$p_B = \frac{60}{400} \ (= 0.15)$	B1		cao; may be implied by correct answer
P($8 \le R \le 12$) = P($R \le 12$)M1use of ≤ 12 M1 for ≥ 1 correct term M2 for 5 correct terms added use of $-$ and ≤ 7 (b)Number of trials/events or sample size or n is not fixed P(success) or P(Y) or p is not constantB12B0 for n not constant or decreasing, etc accept trials/events are not independent or are dependent		$P(B \le 3) = 0.4705$ to 0.4715	B1	2	Awfw (0.4711(213))
$= P(R \le 12)$ $= P(R \le 12)$ $= P(R \le 12)$ $= 0.8462 - 0.1536$ $= 0.692 \text{ to } 0.693$ $A1$ $A1$ A $= 0.692 \text{ to } 0.693$ $A1$ A $= 0.6926(805))$ $B0 \text{ for } n \text{ not constant or decreasing, etc}$ $= 0(100 \text{ constant or decreasing, etc}$ $= 0(10$	(iii)	$p_R = \frac{160}{400} \ (= 0.4)$	B1		
InterventionIntervention $-P(R \le 7)$ $= 0.8462 - 0.1536$ M1M1 for ≥ 1 correct term M2 for 5 correct terms added use of $-$ and ≤ 7 (b)Number of trials/events or sample size or <i>n</i> is not fixedM14P(success) or P(Y) or <i>p</i> is not constantB12B12accept trials/events are not independent or are dependent			M1		use of < 12
(b)Number of trials/events or sample size or n is not fixedB1B0 for n not constant or decreasing, etc accept trials/events are not independent or are dependent(b)Number of trials/events or sample size or n is not fixedB12		$- P(R \le 7)$			M1 for \geq 1 correct term M2 for 5 correct terms added
or n is not fixedB1B0 for n not constant or decreasing, etcP(success) or P(Y) or p is not constantB12B12accept trials/events are not independent or are dependent		= 0.692 to 0.693	A1	4	Awfw (0.6926(805))
P(success) or P(I) or p is not constant B1 2 or are dependent	(b)		B1		B0 for <i>n</i> not constant or decreasing, etc
		P(success) or $P(Y)$ or p is not constant	B1	2	
Total 12		Total		12	

MAS1/W (Cont)

Q	Solution	Marks	Total	Comments
4(a)	$c = \frac{1}{230 - 140} = \frac{1}{90} \text{ or } 0.011$	B1	1	cao/awrt
(b)	$P(X < 200) = c \times (200 - 140)$	M1		attempt at area of a rectangle of height c
	$=\frac{2}{3}$ or 0.67	A1	2	cao/awrt
(c)	Mean: $\mu = \frac{230 + 140}{2} = 185$	B1		cao
	Variance $\sigma^2 = \frac{(230 - 140)^2}{12} = 675$	B1	2	cao
(d)	Large sample or Central Limit Theorem	B1		or equivalent (eg $n \ge 25$)
	\overline{X} is normal with mean = 185	B1√		both; \checkmark on part (c) for mean
	and variance = $\frac{\sigma^2}{75}$	M1		use of their $\sigma^2 \div$ by 75 (may be implied)
	= 9	A1	4	cao
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)	$Var(T) = s^2 = \frac{279.8929}{49} = 5.71$	B1		awrt (5.7121)
	$\operatorname{SE}(\overline{T}) = \sqrt{\frac{\operatorname{Var}(T)}{50}}$	M1		use of
	= 0.338	A1	3	Awrt [cannot be scored in part (b)(i)]
(b)(i)	$\bar{t} = \frac{143.5}{50} = 2.87$	B1		cao; can be scored in part (a)
	99% implies $z = 2.5758$	B1		awfw 2.57 to 2.58
	CI for μ is: $\bar{t} \pm z \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$	M1		use of; must have \sqrt{n} with $n > 1$ or equivalent
	or $\bar{t} \pm z \times \text{SE}(\bar{t})$			or \sqrt{n} in SE (\bar{t})
	Thus: $2.87 \pm (2.5758 \times 0.338)$	A1√		$$ on \bar{t} , z and SE $(\bar{t}) > 0$; accept $\bar{t} = 143.5$ only if clearly stated
	Thus: (2.00, 3.74)	A1	5	awrt; accept 2 dependent on ÷ by 49 in part (a) unless subsequently corrected
(ii)	Evidence to suggest that $\mu = 3.5$ as 3.5 inside CI	B1√ B1√	2	$\sqrt[]{}$ on part (b)(i) clearly stated; $\sqrt[]{}$ on part (b)(i)
(c)	Now evidence to suggest that μ has changed/increased from 3.5 (as 3.5 outside/below CI)	B1		reason not required
	Also evidence (to suggest μ has increased during three months) as CIs do not overlap	B1	2	reason required
	Total		12	

MAS1/W (Cont)

Q		Sol	ution			Marks	Total	Comments
6(a)	Area of rec							
	$A = S \times \left(2 + \frac{40}{S}\right) = 2S + 40$					B1		cao; may be implied by $E(A) = 50$
	Mean:	E(.	$A) = 2 \times$	< 5 + 40	= 50	B1		cao
	Variance:	Va	$\operatorname{ar}(A) = 2$	$2^2 \times \text{Var}$	(S)	M1		use of $Var(aX + b) = a^2 Var(X)$ with $a > 1$ and $b \ge 0$
			=	4 × 33	= 132	A1	4	cao
(b)(i)	<i>s</i> :	1	5	10	20			
	t = 40/s:	40	8	4	2	B1		cao or equivalent
	<i>p</i> :	0.5	0.3	0.1	0.1			
	$\mathrm{E}(T)=\sum t$	$+ \times P(S =$	=s)=2	$\sum t \times p$		M1		use of $\sum x \times P(X = x)$
	$= 40 \times 0.5 = 20$ = 23			$0.1 + 2 \times + 0$		A1	3	cao or equivalent AG
(ii)	Perimeter of rectangle is given by:							
		$P = 2 \times (S + (2 + T)) = 2S + 2T + 4$						
	Mean: $E(P) = 2 \times 5 + 2 \times 23 + 4$ = 60					B2	2	cao
			00		Total	D2	<u> </u>	
					Total		60	