GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAP6

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

m mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy B mark is independent of M or m marks and is for method and accuracy E mark is for explanation \wedge or ft or F follow through from previous incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE	Mmark is t	or method
Bmark is independent of M or m marks and is formethod and accuracy E	m mark is o	lependent on one or more M marks and is for method
E	Amark is o	lependent on M or m marks and is foraccuracy
✓ or ft or F. follow through from previous incorrect result cAO	Bmark is i	ndependent of M or m marks and is formethod and accuracy
incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	Emark is t	orexplanation
incorrect result CAO correct answer only AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	\checkmark or ft or F	follow through from previous
AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate		
AWFW anything which falls within AWRT anything which rounds to AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate	САО	
AG answer given SC special case OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error NMS no method shown PI possibly implied SCA substantially correct approach c candidate		
SC	AWRT	anything which rounds to
OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE .deduct x marks for each error NMS no method shown PI .possibly implied SCA .substantially correct approach c .candidate	AG	answer given
OE or equivalent A2,1 2 or 1 (or 0) accuracy marks -x EE .deduct x marks for each error NMS no method shown PI .possibly implied SCA .substantially correct approach c .candidate	SC	special case
-x EE		
NMSno method shown PIpossibly implied SCAsubstantially correct approach ccandidate	A2,1	
PI	<i>-x</i> EE	
SCAsubstantially correct approach ccandidate	NMS	no method shown
SCAsubstantially correct approach ccandidate	PI	possibly implied
	c	
DP decimal place(s)	DP	decimal place(s)

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	
BOD	
WR	
FB	

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MAP6				
Q	Solution	Marks	Total	Comments
1(a)	$\frac{1-4}{3} = \frac{-3+4}{-1} = \frac{2-4}{2} = -1$	B1	1	all three must be seen
	$\frac{1-5}{2} = \frac{-3+1}{1} = \frac{2-6}{2} = -2$			
(b)	$\begin{bmatrix} 3\\-1\\2 \end{bmatrix} \times \begin{bmatrix} 2\\1\\2 \end{bmatrix}$	M1A1		(b) Alternative:- $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} M1$
	$= \begin{bmatrix} -4\\ -2\\ 5 \end{bmatrix}$	A1F		ft miscopy $x = 1 + 3\lambda + 2\mu$ $y = -3 - \lambda + \mu A1$ $z = 2 + 2\lambda + 2\mu$
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \bullet \begin{bmatrix} -4 \\ -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} -4 \\ -2 \\ 5 \end{bmatrix}$	M1A1F		eliminate λ M1A1F eliminate μ A1F result A1F
	Equation of plane is 4x+2y-5z+12=0	A1F	6	
(c)	Perpendicular distance from $(0,0,0)$			(c) Alternative
	$=\frac{12}{\sqrt{4^2+2^2+(-5)^2}}$	M1A1F		$\overrightarrow{OP} = -\frac{4}{15} \begin{bmatrix} 4\\2\\-5 \end{bmatrix} \text{M1A1F}$
	$=\frac{4}{5}\sqrt{5}$	A1	3	cao $=\frac{4\sqrt{5}}{5}$ A1 cao
	Total		10	

MAP6	(Cont)
	(0011)

Q	Solution	Marks	Total	Comments
2(a)	<i>y</i> -axis	B1	1	
(b)	$\sin\theta = \frac{1}{3}, \qquad \cos\theta = \frac{-2\sqrt{2}}{3}$	B1B1		Correct answer with $\tan \theta = -\frac{1}{2\sqrt{2}}$ scores 3 marks
	angle is $\pi - \sin^{-1} \frac{1}{3} = 2.8$	B1	3	B0 here if B0 awarded in line above cao from correct $\cos \theta$ and $\sin \theta$
				2.8 with no method B1
				3.5 as an answer could be correct but needs scrutiny
	Total		4	
3(a)	$\Delta = 2(0-2) - a(0+6) - a(-1-9)$	M1A1		M1 for correct method of expansion
	=4a-4	A1F	3	ft on one error
(b)	a = 1	B1F	1	
(c)(i)	x = t, $y = 3t$	M1A1		M1 for complete method
	z = 5t	A1F	3	If answer given as $x = \frac{1}{3}y = \frac{1}{5}z$ o.e.
				deduct 1 mark
				Alternative $\begin{bmatrix} 1\\3\\5 \end{bmatrix} B1 \lambda \begin{bmatrix} 1\\3\\5 \end{bmatrix} M1A1F$
(ii)	sheaf (oe) of planes	E1	1	
	Total		8	

MAP6 (Cont)

MAP6 (Con Q	Solution	Marks	Total	Comments
4(-)	$\overrightarrow{AB} = \begin{bmatrix} 1\\ 2\\ -1-p \end{bmatrix} \overrightarrow{AC} = \begin{bmatrix} 2\\ -1\\ 2-p \end{bmatrix}$			
	$\overrightarrow{AD} = \begin{bmatrix} -1\\ -3\\ 4-p \end{bmatrix}$	B2, 1, 0	2	
(b)	$\vec{AB} \times \vec{AC} = \begin{bmatrix} 2(2-p) + (-1-p) \\ -(2-p) + 2(-1-p) \\ -5 \end{bmatrix}$	M1A1F		Alternative $\begin{vmatrix} -1 & -3 & 4-p \\ 1 & 2 & -1-p \\ 2 & -1 & 2-p \end{vmatrix}$
	$ = \begin{bmatrix} 3-3p\\ -4-p\\ -5 \end{bmatrix} $	A1F		expandedM1correctlyA2, 1, 0gather termsm1 $11p-11$ A1F
	$\left(\overrightarrow{AB} \times \overrightarrow{AC}\right) \cdot \overrightarrow{AD} = \begin{bmatrix} 3 - 3p \\ -4 - p \\ -5 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ 4 - p \end{bmatrix}$			
	= -11 + 11p	M1A1F	5	
(c)	-11+11p = 22			
	-11+11p = 22 $p = 3$ $p = -1$	M1A1F		Incorrect formula M0 here
	p = -1	M1A1F	4	but allow this M1 even if formula is incorrect, and A1F also
	Total		11	

MAP6 (Cont)

Q	Solution	Marks	Total	Comments
5(a)	$\mathbf{AX} = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} 3p+2r & 3q+2s \\ 4p+r & 4q+s \end{bmatrix}$	M1A1		M1 for method of multiplying matrices
	$\mathbf{XB} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5p - q \\ 5r - s \end{bmatrix}$	B1	3	
(b)(i)	AX = XB $3p + 2r = 5p, 4p + r = 5r$ 3q + 2s = -q, 4q + s = -s	M1A1F		2 equations are sufficient
	p = r, -2q = s	A1		cao
	$\mathbf{X} = \begin{bmatrix} p & q \\ p & -2q \end{bmatrix}$	A1F	4	
(ii)	Det $\mathbf{X} = -3pq \neq 0$	B1F		Any valid unsimplified expression $\neq 0$
	$\mathbf{X}^{-1} = -\frac{1}{3pq} \begin{bmatrix} -2q & -q \\ -p & p \end{bmatrix}$	M1		For method of finding inverse
	3pq [-p p]	ml		Appropriate use of determinant
		A1F	4	
(iii)	$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{X}^{-1}\mathbf{X}\mathbf{B} = \mathbf{I}\mathbf{B} = \mathbf{B}$	M1A1	2	or directly (i.e. from original matrices) $\mathbf{X}^{-1}\mathbf{X} = \mathbf{I}$ must be seen
(iv)	Eigenvectors $\begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 1\\-2 \end{bmatrix}$	B1B1		OE deduct B1 once if eigenvectors and eigenvalues are not clearly corresponding
	Eigenvalues 5,-1	B1B1	4	
	Total		17	

MAP6	(Cont)
WIALU	(Cont)

Q	Solution	Marks	Total	Comments
6(a)	Any method	B1	1	Must be convincing
(b)(i)	$\overrightarrow{OM} = \frac{1}{2} \left(\mathbf{a} + 5\mathbf{b} \right)$	M1A1		M1 method for either
	$\overrightarrow{ON} = \frac{1}{2} \left(3\mathbf{a} + 3\mathbf{b} \right)$	A1	3	
(ii)	$\Delta OMN = \frac{1}{2} \left \overrightarrow{OM} \times \overrightarrow{ON} \right $			
	$=\frac{1}{8} (\mathbf{a}+5\mathbf{b})\times(3\mathbf{a}+3\mathbf{b}) $	M1		M0 if modules sign missing
	Use of $\mathbf{a} \times \mathbf{a} = 0$	B1		
	Use of $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$	B1		
	$\Delta OMN = 1.5 \mathbf{a} \times \mathbf{b} $	A1F		Must score both B1s for this A1
	$\Delta OQR = \frac{1}{2} 3\mathbf{a} \times 5\mathbf{b} $	B1		
	$\Delta OQR = 5 \Delta OMN$	A1	6	CAO
	Total		10	
	Total		60	