**GCE 2004** June Series



# Mark Scheme

## Mathematics A Unit MAP5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

## Key to Mark Scheme

| M                       | mark is for              | method                                   |
|-------------------------|--------------------------|------------------------------------------|
| m                       | mark is dependent on one | or more M marks and is for method        |
| A                       | mark is dependent on M c | or m marks and is foraccuracy            |
| B                       | mark is independent of M | or m marks and is formethod and accuracy |
| E                       | mark is for              | explanation                              |
| $\checkmark$ or ft or F |                          | follow through from previous             |
|                         |                          | incorrect resul                          |
| CAO                     |                          | correct answer only                      |
| AWFW                    |                          | anything which falls within              |
| AWRT                    |                          | anything which rounds to                 |
| AG                      |                          | answer giver                             |
| SC                      |                          | special case                             |
| OE                      |                          | or equivalen                             |
| A2,1                    |                          |                                          |
| <i>-x</i> EE            |                          | deduct x marks for each error            |
| NMS                     |                          | no method shown                          |
| PI                      |                          | possibly implied                         |
| SCA                     |                          | substantially correct approach           |
| c                       |                          |                                          |
| SF                      |                          | significant figure(s                     |
| DP                      |                          | decimal place(s                          |
|                         |                          |                                          |

### Abbreviations used in Marking

| MC – <i>x</i> | deducted <i>x</i> marks for mis-copy |
|---------------|--------------------------------------|
| MR – <i>x</i> |                                      |
| ISW           | ignored subsequent working           |
| BOD           | given benefit of doubt               |
| WR            | work replaced by candidate           |
| FB            | formulae booklet                     |

#### **Application of Mark Scheme**

| No method shown:<br>Correct answer without working<br>Incorrect answer without working                                                                        | mark as in scheme<br>zero marks unless specified otherwise                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| More than one method/choice of solution:<br>2 or more complete attempts, neither/none<br>crossed out<br>1 complete and 1 partial attempt, neither crossed out | mark both/all fully and award the mean mark<br>rounded down<br>award credit for the complete solution only |
| Crossed out work                                                                                                                                              | do not mark unless it has not been replaced                                                                |
| Alternative solution using a correct or partially correct method                                                                                              | award method and accuracy marks as appropriate                                                             |

| MAP5   |                                                                      |       |       |                                          |
|--------|----------------------------------------------------------------------|-------|-------|------------------------------------------|
| Q      | Solution                                                             | Marks | Total | Comments                                 |
| 1(a)   | $\frac{4}{x(x+4)} = \frac{1}{x} - \frac{1}{x+4}$                     | M1A1  |       | Whole Q depends on the PFs               |
|        | $I = \ln x - \ln(x+4)(+c)$                                           | A1F   | 3     | ft incorrect PFs                         |
| (b)(i) | $I = [\ln x - \ln(x+4)]_0^1$                                         | B1    |       | attempt to put in limits                 |
|        | $\ln x \to -\infty$ as $x \to 0$ : no finite limit                   | E1    | 2     |                                          |
| (ii)   | $\frac{x}{x+4} \rightarrow 1 \text{ as } x \rightarrow \infty$       | E1    |       | a clear explanation is required          |
|        | $\therefore I = \ln 1 - \ln \frac{1}{5}$                             | M1    |       | substitution of limits                   |
|        | $=\ln 5$                                                             | A1F   | 3     | O.E; no ln 1 in answer                   |
|        | Total                                                                |       | 8     |                                          |
| 2      | $\cos^k x = \left(1 - \frac{x^2}{2} \dots\right)^k$                  | M1    |       |                                          |
|        | $=1-\frac{kx^2}{2}\dots$                                             | A1    |       | ignore higher powers of $x$              |
|        | $\lim_{x \to 0} \frac{1 - \left(1 - \frac{kx^2}{2}\right)}{x^2} = 4$ | M1    |       | award only if some function of k appears |
|        | <i>k</i> = 8                                                         | A1F   | 4     |                                          |
|        | Total                                                                |       | 4     |                                          |

MAP5 (Cont)

| Q            | Solution                                             | Marks | Total | Comments                                                         |
|--------------|------------------------------------------------------|-------|-------|------------------------------------------------------------------|
| <b>3</b> (a) | $y_1 = 1 + h(1 + 1 - 3)$                             | M1    |       |                                                                  |
|              | =1-h                                                 | A1    | 2     |                                                                  |
|              |                                                      |       |       |                                                                  |
| (b)(i)       | $x_1 = 1 + h$                                        | B1    |       |                                                                  |
|              | 1                                                    |       |       |                                                                  |
|              |                                                      |       |       |                                                                  |
|              | $v_2 = 1 + 2h((1+h)^2 + (1-h)^2 - 3)$                | M1A1F |       | M0 if $x_1$ used throughout                                      |
|              |                                                      |       |       | M1 if some function of <i>h</i> is used                          |
|              |                                                      |       |       | (including 1)                                                    |
|              |                                                      |       |       |                                                                  |
|              | $=1-2h+4h^3$                                         | A1    | 4     | AG                                                               |
|              |                                                      |       |       |                                                                  |
| (ii)         | h = 0.05                                             | B1    |       | B0 if $h = 0.1$                                                  |
|              | $y(1.1) = y_2 = 1 - 2 \times 0.05 + 4 \times 0.05^3$ | DIE   | -     |                                                                  |
|              | = 0.9005                                             | BIF   | 2     | Would have to accept to 3 sig fig<br>ft $h = 0.1$ (giving 0.804) |
|              | Total                                                |       | 8     | n(n-0.1) (giving 0.804)                                          |
| 4            | $2 = r + r \cos \theta$                              | M1    | 0     |                                                                  |
|              | =r+x                                                 | B1    |       | i.e. $x = r \cos \theta$ used relevantly                         |
|              | 2-x=r                                                | A1    |       |                                                                  |
|              | $(2-r)^2 = r^2 + v^2$                                | M1    |       | For relevant use of $r = \sqrt{r^2 + v^2}$                       |
|              | (2 x) - x + y                                        | 141 1 |       | For relevant use of $r = \sqrt{x} + y$                           |
|              | $4 - 4x + x^2 = x^2 + y^2$                           | A1    |       |                                                                  |
|              | $y^2 = 4(1-x)$                                       | A1F   | 6     | Or $y^2 = 4 - 4x$ o.e.                                           |
|              |                                                      |       |       | ft simple arithmetical errors only                               |
|              | Total                                                |       | 6     |                                                                  |

#### MAP5 (Cont)

| Q    | Solution                                                                                        | Marks | Total | Comments                                                                   |
|------|-------------------------------------------------------------------------------------------------|-------|-------|----------------------------------------------------------------------------|
| 5(a) | $IF = e^{-\int \frac{1}{x+1} dx} = e^{-\ln(x+1)}$                                               | M1A1  |       |                                                                            |
|      | $=\frac{1}{x+1}$                                                                                | A1    | 3     |                                                                            |
| (b)  | $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{x+1}\right) = \frac{x^2}{x+1}$                    | M1A1  |       |                                                                            |
|      | $=\frac{1}{x+1}+x-1$                                                                            | M1A1F |       |                                                                            |
|      | $\frac{y}{x+1} = \frac{x^2}{2} - x + \ln(x+1) + c$                                              | A1F   |       | Allow if <i>c</i> missing                                                  |
|      |                                                                                                 |       |       | Or by substituting $u = x + 1$                                             |
|      |                                                                                                 |       |       | in this case $\int \left(u - 2 + \frac{1}{u}\right) du$ M1A1               |
|      | <i>c</i> = 2                                                                                    | A1F   | 6     | $\frac{(x+1)^2}{2} - 2(x+1) + h(x+1) + c \qquad A1$                        |
|      | $y = (x+1)\left(\frac{x^2}{2} - x + \ln(x+1) + 2\right)$                                        |       |       | <i>c</i> = 3.5 A1                                                          |
| (c)  | $\lim_{x \to -1} y = 0 \text{ since } (x+1)\ln(x+1) \to 0$                                      |       |       |                                                                            |
|      | as $x \to -1$                                                                                   | E1    | 1     | Must have proper explanation.                                              |
|      | Total                                                                                           |       | 10    |                                                                            |
| 6(a) | $R_1 + R_2 = \frac{1}{2} \int_{-(\pi - \alpha)}^{\alpha} 4(1 - \cos \theta)^2 \mathrm{d}\theta$ | M1A1  |       | M1 for use of formula<br>A1 for correct limits (appearing at any<br>point) |
|      | $(1-\cos\theta)^2 = 1-2\cos\theta + \cos^2\theta$                                               | A1    |       |                                                                            |
|      | $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ used                                               | M1    |       |                                                                            |
|      | $I = \left[3\theta - 4\sin\theta + \frac{\sin 2\theta}{2}\right]$                               | A1F   |       |                                                                            |
|      | a = 3, b = -8                                                                                   | A1A1  | 7     | CAO                                                                        |
| (b)  | $OA = 2 (1 - \cos \alpha)$                                                                      | B1    |       |                                                                            |
|      | $OB = 2(1 - \cos(-\pi + \alpha))$                                                               | B1    |       | Could use $\pi + \alpha$                                                   |
|      | AB = 4                                                                                          | B1    | 3     |                                                                            |
|      | Total                                                                                           |       | 10    |                                                                            |

MAP5 (Cont)

| Q    | Solution                                                                                                                                              | Marks | Total | Comments                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------|
| 7(a) | $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - k \frac{\mathrm{d}y}{\mathrm{d}x}$                                          | M1A1  |       |                                                                                                            |
|      | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - k \frac{\mathrm{d}y}{\mathrm{d}x} - k \left(\frac{\mathrm{d}y}{\mathrm{d}x} - ky\right) = 12x\mathrm{e}^{kx}$ | M1    |       | M1 for everything in $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ or in $\frac{du}{dx}$ , <i>u</i> and <i>y</i> |
|      | $\frac{\mathrm{d}u}{\mathrm{d}x} - ku = 12x\mathrm{e}^{kx}$                                                                                           | A1    | 4     | AG                                                                                                         |
| (b)  | IF is $e^{\int -kdx} = e^{-kx}$                                                                                                                       | B1    |       | $\begin{bmatrix} Alternative method \\ CF u = Ae^{kx} & B1 \end{bmatrix}$                                  |
|      | $\frac{\mathrm{d}}{\mathrm{d}x}\left(u\mathrm{e}^{-kx}\right) = 12x$                                                                                  | M1A1  |       | PI $u = Bx^2 e^{kx}$ M1<br>$\frac{du}{dx} = kBx^2 e^{kx} + 2xBe^{kx}$ m1A1<br>B = 6 A1                     |
|      | $ue^{-kx} = 6x^2 + A$                                                                                                                                 | A1    |       | A0 if A missing                                                                                            |
|      | $u = (6x^2 + A) e^{kx}$                                                                                                                               | A1F   | 5     | f.t. A missing                                                                                             |
| (c)  | $\frac{\mathrm{d}y}{\mathrm{d}x} - ky = \left( 6x^2 + A \right) \mathrm{e}^{kx}$                                                                      | M1    |       | If attempt is made using C.F. and P.I.C.F. $y = (A + Bx)e^{kx}$ B1                                         |
|      | IF is $e^{-kx}$                                                                                                                                       | B1    |       | $P.I. \ y = Cx^3 e^{kx} \qquad M1$                                                                         |
|      | $\frac{\mathrm{d}}{\mathrm{d}x}\left(y\mathrm{e}^{-kx}\right) = 6x^2 + A$                                                                             | A1    |       | completely correct A1<br>total 3/5                                                                         |
|      | $y e^{-kx} = 2x^3 + Ax + B$                                                                                                                           | A1    |       |                                                                                                            |
|      | $y = (2x^3 + Ax + B)e^{kx}$                                                                                                                           | A1    | 5     | 6                                                                                                          |
|      | Total                                                                                                                                                 |       | 14    |                                                                                                            |
|      | Total                                                                                                                                                 |       | 60    |                                                                                                            |