GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAP4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

Dr Michael Cresswell Director General

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

M	mark is for method
m	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is foraccuracy
B	mark is independent of M or m marks and is formethod and accuracy
	mark is forexplanation
	incorrect resul
CAO	correct answer only
AWFW	anything which falls withir
AWRT	anything which rounds to
AG	answer giver
	special case
OE	or equivalen
-x EE	deduct x marks for each error
NMS	no method showr
PI	possibly implied
SCA	substantially correct approach
c	candidate
SF	significant figure(s
	decimal place(s
	•

Abbreviations used in Marking

deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
given benefit of doubt
work replaced by candidate
formulae booklet

Application of Mark Scheme

No method shown:

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out

1 complete and 1 partial attempt, neither crossed out

mark both/all fully and award the mean mark rounded down award credit for the complete solution only

do not mark unless it has not been replaced

award method and accuracy marks as

Crossed out work

Alternative solution using a correct or partially correct method appropriate

Mathematics A – Advanced Mark Scheme

MAP4

Q	Solution	Marks	Total	Comments
1(a)	$(3-i)^2 = 9-6i+i^2 = 8-6i$ $a(8-6i)+b(3-i)+10i = 0$	B1	1	
(b)(i)	a(8-6i)+b(3-i)+10i=0	M1		Substituting 3 – i into quadratic.
	Equating R & I parts	M1A1		
	8a + 3b = 0			
	-6a - b + 10 = 0			
	Attempt to solve	M1		
	a=3, $b=-8$	A1A1F	6	a = 3 is AG If $a = 3$ is assumed, allow M1A1 for b
(ii)	Sum of roots $=-\frac{b}{a}$	M1		If sum of roots is – 8 give M0
	or product = $\frac{c}{a}$			
	$\beta = -\frac{1}{3} + i$	A1A1F	3	A1 for $-\frac{1}{3}$, A1 for + i
	Total		10	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
2(a)	$\frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} = \frac{r+2-r}{r(r+1)(r+2)}$	M1		
	$=\frac{2}{r(r+1)(r+2)}$	A1	2	
(b)	$\frac{2}{1\times2\times3} = \frac{1}{1\times2} - \frac{1}{2\times3}$			
	$\frac{2}{2\times3\times4} = \frac{1}{2\times3} - \frac{1}{2\times4}$			
	$\frac{2}{3\times4\times5} = \frac{1}{3\times4} \frac{1}{4\times5}$	M1A1		3 rows including first and last and clear cancellation for the A1 Accept last row in terms of <i>n</i>
	$\frac{2}{30 \times 31 \times 32} = \frac{1}{30 \times 31} - \frac{1}{31 \times 32}$			
	$S = \frac{1}{2} \left(\frac{1}{1 \times 2} - \frac{1}{31 \times 32} \right)$	M1A1		For substituting $n = 30$. Ignore missing $\frac{1}{2}$ for A1. Do not allow M1 if sum is left in terms of n .
	$=\frac{495}{1984}$	A1	5	cao
	Total		7	

Mathematics A – Advanced Mark Scheme

Q Q	Solution	Marks	Total	Comments
3(a)				
(i)	Straight line	B1		
	Perpendicular bisector of (0, 1) and (2, 0)	В1	2	Gradient must be > 1 i.e. greater than that of the other line.
(ii)	Half line	B1		
	through $(0,1)$ with gradient ≈ 1	B1	2	
(b)	Correct identification of	B1		
	$\arg (z - i) = -\frac{\pi}{2}$			
	Shading on correct sides of boundaries	B2,1,0	3	For double shading or no shading at all without explanation, deduct B1
	Total		7	

Mark Scheme Advanced – Mathematics A

MAP4 (O	Solution	Marks	Total	Comments
		M1A1	Total	M1 for substituting
.()	$(y-3)^3 + 9(y-3)^2 + 27(y-3) + 35 = 0$ $(y-3)^3 = y^3 - 9y^2 + 27y - 27$	M1A1		(a) Otherwise:
	$(y-3)^3 = y^3 - 9y^2 + 27y - 27$ $(y-3)^2 = y^2 - 6y + 9$	A1		$\sum (\alpha+3) = 0 \qquad M1A1$ $\sum (\alpha+3)(\beta+3) = 0 \qquad M1A1$
	$y^3 + 8 = 0$	A1	6	$(\alpha + 3)(\beta + 3)(\gamma + 3) = -8$ M1A1
(b)(i)	$y^3 = -8e^{2k\pi i}$	M1		Alternatie for 4(b)(i) $(a+ib)^3 = -8$
	$y = -2$, $-2e^{\frac{-2\pi i}{3}}$, $-2e^{\frac{-2\pi i}{3}}$	A1		$\begin{vmatrix} a^3 - 3ab^2 = -8 \\ 3a^2b - b^3 = 0 \end{vmatrix} M1$
	$=-2$, $1-\sqrt{3}i$, $1+\sqrt{3}i$	A1	3	2 values of a A1 $(-2,1)$ A1 3 values of b A1 $(0\pm\sqrt{3})$ A1 Or $(y^3 + 8 = (y+2)(y^2 - 2y + 4) \text{ M1}$ $\text{roots} -2, 1\pm\sqrt{3}i \text{ A2, 1, 0}$
(ii)	α, β and γ are $-5, -2 \pm \sqrt{3}i$	M1A1F	2	If 3 is added to the roots in (b)(i) allow M1A0
5(a)	Total		11	
3(a)	Attempt to expand $\left(z^2 - \frac{1}{z^2}\right)^3$	M1		
	A = -3, B = 1	A1A1	3	
(b)(i)	$(2i\sin 2\theta)^3 = -3(2i\sin 2\theta) + 2i\sin 6\theta$	M1A1F		Incorrect A, B
	$(2i\sin 2\theta)^3 = -8i\sin^3 2\theta$	A1F		
	$\sin^3 2\theta = \frac{3}{4} \sin 2\theta - \frac{1}{4} \sin 6\theta$	A1	4	AG
(ii)	$= \int_0^{\frac{1}{4}\pi} \sin^3 2\theta d\theta = \left[-\frac{3}{8} \cos 2\theta + \frac{1}{24} \cos 6\theta \right]_0^{\frac{1}{4}\pi}$	M1A1		If expression appears to be differentiated M0. Sign errors M1A0
	$= \frac{3}{8} - \frac{1}{24} = \frac{1}{3}$	A1	3	AG
	Total		10	

Mathematics A – Advanced Mark Scheme

Q	Solution	Marks	Total	Comments
6(a)	$\frac{\mathrm{d}}{\mathrm{d}t} \left(2 \tan^{-1} \mathrm{e}^t \right) = \frac{2}{1 + \mathrm{e}^{2t}} \times \mathrm{e}^t$	M1A1 A1		$\frac{2}{1-e^{2t}} M1A0$
	$=\frac{2}{e^t + e^{-t}}$	M1		i.e. for dividing by e ^t Alternative for last two marks
	= sech <i>t</i>	A1	5	$\operatorname{sech} t = \frac{1}{\cosh t} = \frac{2}{e^t + e^{-t}} = \frac{2e^t}{1 + e^{2t}} \text{ M1A1(2)}$
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = (\cosh t)^{-2} \sinh t$	M1A1		$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2(\mathrm{e}^t - \mathrm{e}^{-t})}{(\mathrm{e}^t + \mathrm{e}^{-t})^2}$ M1 only unless
(**)	= secht tanht	A1	3	converted back into sech t and tanh t
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{sech}^2 t$	B1		P.I.
	$\left[\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right)^2 = \mathrm{sech}^4 t + \mathrm{sech}^2 t \tanh^2 t \right]$			
	$= \operatorname{sec} h^2 t \left(\operatorname{sec} h^2 t + \tanh^2 t \right)$	M1		Needs to be factorized for M1.
	$= \operatorname{sech}^2 t$	A1	3	M1 could be given for use of $\tanh^2 t = 1 - \operatorname{sech}^2 t$ CAO
(c)(i)	$S = 2\pi \int_{t=0}^{t=1} y \mathrm{d}s$			
	$=2\pi\int_0^1(2-\operatorname{sech} t)\operatorname{sech} t\mathrm{d}t$	B1	1	AG must be from correct (b)(ii) i.e. correct working
(ii)	$=2\pi \left[4\tan^{-1}e^t-\tanh t\right]_0^1$	B1B1		
	$=2\pi \left[4\tan^{-1}e - \tanh 1 - \pi\right]$	B1	3	AG
	Total		15	
	Total		60	