GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAP2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

Dr Michael Cresswell Director General

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Mark Scheme Advanced - Mathematics A

Key to Mark Scheme

M	mark is for	method
	mark is dependent on one or more M marks and is for	
	mark is dependent on M or m marks and is for	
	mark is independent of M or m marks and is formetho	
	mark is for	
	follow through	
		incorrect result
CAO	corre	
	anything wh	•
	anything w	
	deduct x marks	•
	no	
	po	
	substantially co	• •
	signi	
	d	• , ,
		1 ()

Abbreviations used in Marking

deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
given benefit of doubt
work replaced by candidate
formulae booklet

Application of Mark Scheme

No method shown:

Crossed out work

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out

mark both/all fully and award the mean mark rounded down award credit for the complete solution only

1 complete and 1 partial attempt, neither crossed out

do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method

award method and accuracy marks as appropriate

Mathematics A – Advanced Mark Scheme

MAP2

Q	Solution	Marks	Total	Comments
1(a)(i)	Crosses <i>y</i> -axis when $x = 0$	D.1		
	i.e. when $y = -1$	B1	1	
(ii)	crosses x-axis when $y = 0$			
	i.e. when			
	2x+1=0			
	1			
	$x = -\frac{1}{2}$	B1	1	
	$\frac{2x+1}{2} = \frac{2(x-1)+3}{2}$			
(b)(i)	$\frac{1}{x-1} = \frac{\sqrt{x-1}}{x-1}$	M1		OE
	$=2+\frac{3}{x-1}$	A1A1	3	Accept $A = 2 \& B = 3$
(ii)	x = 1	В1		
			2	
	y = 2	B1ft	2	
(c)	$x = 1$ $y \land x = 1$ $y = 2$ $-\frac{1}{2} 0 1 x$	В3	3	B1 ft asymptotes B1 ft intercepts (on part (a)) B1 shape
(d)	$\frac{2x+1}{x-1} \le 0 \text{ for } -\frac{1}{2} \le x < 1$	B1 B1	2	for $-\frac{1}{2}$ and \leq for 1 and $<$ (B1 for end points correct)
	Total		12	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
2(a)	$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta(i)$			
	$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta(ii)$			
	add the two equations (i) & (ii) together	M1		
	$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$	A1	2	AG
(b)(i)	$2 \sin 8x \cos 2x = \sin (8x + 2x) + \sin (8x - 2x)$	M1		
	$= \sin 10x + \sin 6x$	A1	2	
(ii)	$\int 6 \sin 8x \cos 2x dx$			
	$= 3 \int (\sin 10x + \sin 6x) \mathrm{d}x$	M1ft		Use their (i)
	$=3\left(\frac{-\cos 10x}{10} - \frac{\cos 6x}{6}\right) + c$	M1ft		Integration attempted
	$= -\frac{3}{10}\cos 10x - \frac{1}{2}\cos 6x + c$	A1ft	3	Any correct form
	Total		7	

Mathematics A – Advanced Mark Scheme

Q Q	Solution	Marks	Total	Comments
3(a)	π			
<i>S(ii)</i>	$\int_{2}^{\frac{\pi}{2}} x \cos x \mathrm{d}x$			
	$\int x \cos x dx$			
	0	M1		
	$= x \sin x - \int \sin x dx$	M1		
	π	A 1		
	$= \left\{ x \sin x + \cos x \right\}_0^{\frac{\pi}{2}}$	A1		
	π .	M1		Radians only
	$=\frac{\pi}{2}-1$	A1	5	0.570 to 0.571
(b)(i)	$t = x^2 + 4 \Rightarrow dt = 2x dx$	M1		correct
	$t = x^{2} + 4 \Rightarrow dt = 2x dx$ $\therefore \int \frac{2x dx}{\sqrt{x^{2} + 4}} = \int \frac{dt}{\sqrt{t}}$		2	
	$\int \sqrt{x^2+4} - \int \sqrt{t}$	A1	2	AG
	$\frac{2}{6} 2x dx = \frac{8}{6} - \frac{1}{4}$			
(ii)	$\int \frac{2x}{\sqrt{2}} dt = \int t^{-2} dt$			
	$0 \ \sqrt{x^2 + 4} \ 4$			
	$\int_{0}^{2} \frac{2x dx}{\sqrt{x^2 + 4}} = \int_{4}^{8} t^{-\frac{1}{2}} dt$ $\left[2\sqrt{t}\right] \operatorname{or} \left[2\sqrt{x^2 + 4}\right]$	M1		Integration attempted
	$\begin{bmatrix} 2\sqrt{t} & \text{Jor} & 2\sqrt{x^2 + 4} \end{bmatrix}$	A1		correct
	$= 2\sqrt{8} - 2\sqrt{4}$ $= 2(2\sqrt{2}) - 4$	M1		attempt at correct limits seen
	$=2(2\sqrt{2})-4$			
	$=4\left(\sqrt{2}-1\right)$	A1	4	AG (AWRT 1.7)
	Total		11	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x \times 2\cos 2x + \mathrm{e}^x \times \sin 2x$	M1 A1A1	3	Use of product rule A1 for each part correct
(ii)	$\frac{dy}{dx}\Big _{x=0} = 2$ $\therefore y = mx \Rightarrow \text{ equation of tangent at } (0,0)$	M1		
(b)	$is y = 2x$ $\frac{dy}{dx}\Big _{x=\pi} = 2e^{\pi}$	A1ft	2	
	∴ gradient of normal at $x = \pi$ is $-\frac{1}{2e^{\pi}}$ when $x = \pi$, $y = 0$	M1 B1		Use of $m_1 \times m_2 = -1$ (-0.216)
	∴ equation of normal at $(\pi, 0)$ is given by $y = -\frac{1}{2e^{\pi}} (x - \pi)$	M1ft		on their gradient of normal
	$\Rightarrow 2e^{\pi}y + x = \pi$ Total	A1	4 9	AG (any correct form)

Mathematics A – Advanced Mark Scheme

MAP2 (Con Q	Solution	Marks	Total	Comments
	$f(x) = x^3 - 15$			
	f(2) = -7 < 0	B1		values
	f(3) = 12 > 0	E1	2	change of sign
	∴ root in the interval [2,3]			
(b)(i)	$x = \frac{2}{3}x + \frac{5}{x^2}$			
	$x = \frac{2}{3}x + \frac{5}{x^2}$ $(\times 3x^2) \Rightarrow 3x^3 = 2x^3 + 15$ $x^3 - 15 = 0$	M1		
	$x^3 - 15 = 0$	A1	2	AG
(ii)	$x_{n+1} = \frac{2}{3}x_n + \frac{5}{x_n^2}$			
	using $x_1 = 3$,	M1		
	$x_2 = 2.555556$	A1		
	$x_3 = 2.469299$	A1√		on their x_2
	$x_4 = 2.466216$	A1√	4	2.466215932
(iii)				
	$y = x$ $x_3 x_2 x_1$	B2	2	B1 for staircase B1 for convergence
(iv)	3√15	B1	1	
	Total		11	

Mark Scheme Advanced – Mathematics A

Q	Solution	Marks	Total	Comments
6(a)(i)	C(4,3)	B1		
(ii)	r = 2	B1	2	
(b)(i)	$(x, 4)^2 + (x, 2)^2 - 4$ and $x = x + 1$			
(6)(1)	$(x-4)^2 + (y-3)^2 = 4$ and $y = x+1$ meet when $(x-4)^2 + (x+1-3)^2 = 4$	M1		Culturation attachment of
		M1		Substitution attempted or eliminating <i>x</i>
	$\Rightarrow (x-4)^{2} + (x-2)^{2} = 4$ $(x^{2} - 8x + 16) + (x^{2} - 4x + 4) = 4$			
	$(x^2 - 8x + 16) + (x^2 - 4x + 4) = 4$	M1		Multiply out correctly and simplification
	$2x^2 - 12x + 20 = 4$			attempted
	$x^2 - 6x + 8 = 0$	A1		quadratic
	(x-4)(x-2)=0	M1		factorise/other valid method attempted
	x = 4 or $x = 2$			
	4			
	$x = 4$ \Rightarrow $y = 5$ $x = 2$ \Rightarrow $y = 3$ $A(4, 5) \& B(2, 3)$	A1ft	5	Both points (cao)
	$x-2 \rightarrow y-3$			
(ii)	Area of segment = $\frac{1}{4}\pi(2)^2 - \frac{1}{2}(2\times 2)$			
	Area of segment $-\frac{1}{4}(2)$ $-\frac{1}{2}(2\times 2)$	M1		$\frac{1}{4}$ × circle - triangle
		A1ft		(on their value of r)
	$=\pi-2$	A1	3	AG (AWRT 1.14)
	Total		10	
	Total		60	