GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAP1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one	or more M marks and is for method
A	mark is dependent on M of	or m marks and is foraccuracy
B	mark is independent of M	or m marks and is formethod and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		
- <i>x</i> EE		
NMS		no method shown
PI		possibly implied
SCA		substantially correct approach
c		
SF		significant figure(s)
DP		decimal place(s)
		• • • •

Abbreviations used in Marking

MC – <i>x</i>	
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	mark as in schemezero marks unless specified otherwise
More than one method/choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method appropriate	award method and accuracy marks as

MAP1

Q	Solution	Marks	Total	Comments
1(a)	Formula for sum of AP	M1		Stated or used
	All numbers substituted	m1		Condone one error here
	Sum is 20 100	A1	3	NMS 3/3
(b)(i)	Values are 6, 14, 22, 30	B2, 1	2	B1 for one error, $eg - 2$, 6, 14, 22
(ii)	Any clear correct method	M1		
	Sum is $2 \times 20100 = 40\ 200$	A1F	2	ft wrong answer to (a); NMS 2/2
	Total		7	
2(a)	Arc length formula	M1		stated or used (θ in radians)
	$P = 8(\theta + 2)$	A1	2	Convincingly shown (AG)
			-	
(h)	Sector area formula	M1		Stated or used (θ in radians)
(3)	4 - 32.0	A 1	2	Stated of used (o in fadians)
	A = 52.0	AI	2	
(0)	220 - 8(0 + 2)	MI		Condone minture of doe and red have
(0)	320 = 8(0+2)	IVI I		Condone mixture of deg and rad here
	$S_{\rm el}$	1 4 1 5	2	Allow $\frac{16}{10}$; ft numerical error in (b);
	Solving to give $\theta = \frac{1}{3}$	mIAIF	3	24
			-	NMS 2/3
2(-)	$\frac{10tal}{10tal}$		1	
3(a)	y(0) = 6, y(1) = -1	B1B1		
	Sign change, so root between	E1	3	
	$\begin{pmatrix} 2 & \frac{1}{2} \end{pmatrix}$	N / 1 A 1		M1 for $loc^{\frac{1}{2}}$
(b)(i)	$y'=2\left \frac{3}{2}x^{2}\right $	MIAI		
	= 9	B1		
		DI		
	$y''=3\left(\frac{1}{x}x^{-\frac{1}{2}}\right)$			
		M1A1	5	M1 for $kx^{-\frac{1}{2}}$ as deriv of 1st term
(ii)	At CD 2 $\frac{1}{2}$ 0			
(11)	At SP $3x^2 = 9$	MI		Or B1 for $x = 9$ verified,
				then B1 for $y = -27$
	So $x = 9$	A1F		It numerical error in y'
	and $y = -27$	A1	3	
(iii)	At SP $y'' = \frac{1}{2}$	B1		
	Z This is positive, so printeres		2	ft wrong value for "at SD
	1 ms is positive, so minimum	EIF	2	it wrong value for y at SP
	Total		13	

MAP1 (Cont)

Q	Solution	Marks	Total	Comments
4(a)	$\ln(pq) = \ln p + \ln q$	B1	1	
(b)	$\ln\left(p^2q^3\right) = 2\ln p + 3\ln q$	B1	1	
(c)	$\ln\left(\frac{p}{q}\right) = \ln p - \ln q$	B1	1	
(d)	$\ln\sqrt{\frac{p}{q}} = \frac{1}{2}\ln p - \frac{1}{2}\ln q$	B1F	1	ft wrong answer to (c)
	Total		4	
5(a)(i)	$r = \frac{345}{230} = 1.5$	B1	1	Convincingly shown but condone verification (AG)
(ii)	3^{rd} term = 517.5 4^{th} term = 776.25	B1 B1	2	Allow 517 or 518 Allow AWRT 776 or 777 SC B1 for answers 776(.25) and 1164(.375)
(b)	1801 value from 4 th term i.e. (AWRT) 7 760 000 to 3 SF or 7 770 000	M1 A1F	2	ft c's value for 4 th term in (a) (ii) NMS 2/2 for c's answer ×10 000
	Total		5	
6(a)	$\sin^2 x + \cos^2 x \equiv 1$	M1		Stated or used
	So at $P/Q \sin^2 x + \sin x - 1 = 0$	A1	2	convincingly shown (AG)
(b)(i)	$\sin x = \frac{-1\pm\sqrt{5}}{2}$	M1A1	2	NMS 2/2 for AWRT 0.618 and AWRT –1.62
(ii)	Pos value is 0.618(03)	A1		Convincingly shown (AG)
	-1.62 < -1 so impossible	E1	2	Allow $\sin x \operatorname{can't}$ be neg in given domain'
(c)	Attempt at $\sin^{-1} 0.618$ x - coord of P is 0.67	M1 A1		PI by answer in radians or degrees Allow AWRT 0.67 or 0.66 AWRT 2.48 or 2.47 or 142;
	x -coord of Q is 2.48	AIF	3	ft wrong co-ordinate for P
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\int \left(e^{2x} + 1 \right) dx = \frac{1}{2} e^{2x} + x \left(+ c \right)$	M1A1 A1	3	M1 for at least one term correct
(ii)	Substitution and subtraction	M1		In c's integral (not in y or y') Subtraction the right way round
	$\int_{0}^{10} (e^{2x+1}) dx = (2+1n^2) - \frac{1}{2}$	A1		Allow if the first term (2) is correct
	$=\frac{3}{2}+\ln 2$	A1	3	Convincingly shown (AG)
(b)(i)	$x = 0 \Longrightarrow y = 2$	B1	1	
(ii)	Use of $e^{\ln 2} = 2$ or $e^{\ln 4} = 4$	M1		
	$x=1n \ 2 \Rightarrow y=5$	A1	2	NMS 2/2 for AWRT 5.00
(c)(i)	Range of f is $2 \le f(x) \le 5$	B1F	1	ft wrong answers in (b); condone < for \leq ; allow any notation for f(<i>x</i>)
(ii)	Sketch of f with correct domain	B1		
	Sketch of inverse fn correct	B1	2	Ignore anything outside domain; curve must intersect positive <i>x</i> -axis
(iiii)	ln z appearing in solution	M1		Where z is any function of x or y
	Complete method	m1		
	$f^{-1}(x) = \frac{1}{2}\ln(x-1)$	A1	3	correctly bracketed and in terms of x ; NMS 3/3
	Total		15	
	Total		60	