GCE 2004 June Series

Mark Scheme

Mathematics A Unit MAM3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

Dr Michael Cresswell Director General

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Mark Scheme Advanced - Mathematics A

Key to Mark Scheme

M	mark is for method
m	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
	mark is independent of M or m marks and is formethod and accuracy
	mark is forexplanation
	follow through from previous
	incorrect result
CAO	correct answer only
AWRT	anything which rounds to
	answer given
SC	special case
	or equivalent
	deduct x marks for each error
NMS	no method shown
	possibly implied
	substantially correct approach
c	candidate
SF	significant figure(s)
	decimal place(s)

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
ISW	ignored subsequent working
	given benefit of doubt
	work replaced by candidate
	formulae booklet

Application of Mark Scheme

No method shown:

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out

1 complete and 1 partial attempt, neither crossed out

mark both/all fully and award the mean mark rounded down

award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method

award method and accuracy marks as appropriate

Mathematics A – Advanced Mark Scheme

MAM3

Q	Solution	Marks	Total	Comments
1(a)	X = 2W	B1		
	Y = W	B1	2	
(b)	Moments about <i>A</i> :			
	W. i. a. awa	2.61.4.1		
	$Wa\sin\theta = 2W 2a\cos\theta$	M1A1		
	$\theta = \tan^{-1}4 \ (\approx 76.0^{\circ})$	A1	3	
(c)	P must pass through the point of			
	intersection of the lines of action of W and $2W$			
	P			
	n e e e e e e e e e e e e e e e e e e e	B1		Lines of action of W, 2W clearly
	$B \rightarrow 2w$			indicated.
	W	B1	2	Line of action of <i>P</i> clearly passing
				through the intersection of lines of
				action of W, 2W.
	Total		7	
2(a)	2 revs per second = $4\pi \text{ rad s}^{-1}$	A1		
	angular momentum = $1.5 \times 4\pi$ = 6π ($\approx 18.8 \text{ kg m}^2\text{s}^{-1}$)	M1 A1	3	Units not required
	- on (~10.0 kg iii s)	Al	3	Units not required
(b)	Angular momentum conserved:	M1		
	$6\pi = 8\omega$			
	$\omega = \frac{3\pi}{4} \ (\approx 2.36 \text{ rad s}^{-1})$	A1	2	
	Total		5	
	1 Otal		3	

Mark Scheme Advanced – Mathematics A

MAM3 (Cont)

3(a) $ \begin{array}{c} X=4+3+3+2=12\\ Y=3+4+(-3)+1=5\\ F=\sqrt{(12^2+5^2)}\\ =13\\ A1\\ A1\\ A1\\ A2\\ (b) \end{array} $ Moments clockwise about O : $3\times2+3\times3+3\times4-1\times3=24\\ -5d=24\\ d=-4.8\\ A1\\ A1\\ A2\\ (c) \end{array} $ Moments clockwise about O : $3\times2+3\times3+3\times4-1\times3=24\\ -5d=24\\ d=-4.8\\ A1\\ A1\\ A2\\ A3\\ A4\\ A4\\ A4\\ A4\\ A4\\ A4\\ A4\\ A4\\ A4\\ A4$	MAM3 (O	Solution	Marks	Total	Comments
			Wiai Ks	1 Otal	Comments
		$Y = 3 + 4 + (-3) + 1 = 5$ $F = \sqrt{(12^2 + 5^2)}$ $= 13$ Moments clockwise about O :	B1 M1 A1	4	Or anticlockwise – must be consistent
(c) $ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $					
4(a) $I = \frac{1}{2} \times 10m \times a^2$ $= 5ma^2$ A11(b)(Taking tension in AB as T_1 , in BC as T_2) accelerations of A and C are equal: $f_A = f_C = a\omega$ for B : $a(T_2 - T_1) = 5ma^2\dot{\omega}$ for A : 		d = -4.8	A1	4	
4(a) $I = \frac{1}{2} \times 10m \times a^2$ $= 5ma^2$ A11(b)(Taking tension in AB as T_1 , in BC as T_2) accelerations of A and C are equal: $f_A = f_C = a\omega$ for B : $a(T_2 - T_1) = 5ma^2\dot{\omega}$ for A : $T_1 = ma\dot{\omega}$ for C : $2mg - T_2 = 2ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ changes) $2mgh = \frac{1}{2}mv^2 + \frac{1}{2}2mv^2 + \frac{1}{2}1\dot{\theta}^2$ but $v = a\dot{\theta}$, $h = a\theta$ $\dot{\omega} = \frac{g}{2a\dot{\theta}}$ $\dot{\theta}^2 = \frac{g}{2a\dot{\theta}}$ $\dot{\theta} = \frac{g}{2a\dot{\theta}}$ $\ddot{\theta} = \frac{g}{4a}$ $\ddot{\theta} = \frac{g}{4a}$ (A1) $\ddot{\theta}^2 = \frac{g}{2a\dot{\theta}}$ $\ddot{\theta} = \frac{g}{4a}$ $\ddot{\theta} = \frac{g}{4a}$ (A2) $\ddot{\theta}^2 = 2\dot{\theta}\dot{\theta}$ $\ddot{\theta}^2 = 2\dot{\theta}\dot{\theta}$	(c)	L = 24 clockwise	A1FA1	2	ft on magnitude
(b) (Taking tension in AB as T_1 , in BC as T_2) accelerations of A and C are equal: $f_A = f_C = a\dot{\omega}$ for B : $a(T_2 - T_1) = 5ma^2\dot{\omega}$ for A : $T_1 = ma\dot{\omega}\dot{\omega}$ for C : $2mg - T_2 = 2ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $\dot{\omega} = \frac{g}{4a}$ (Alternative solution considering energy changes) $2mgh = \frac{1}{2}mv^2 + \frac{1}{2}2mv^2 + \frac{1}{2}1\dot{\theta}^2$ $\dot{\theta}^2 = \frac{g}{2a}\theta$ $\ddot{\theta} = \frac{g}{2a}\theta$ $\ddot{\theta} = \frac{g}{2a}\theta$ $\ddot{\theta} = \frac{g}{4a}$ (Alt) (B) (B)	(1)				
accelerations of A and C are equal: $f_A = f_C = a\dot{\omega}$ for B : $a(T_2 - T_1) = 5ma^2\dot{\omega}$ for A : $T_1 = ma\dot{\omega}$ for C : $2mg - T_2 = 2ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$ $2mg = \frac{g}{4a}$ (Alternative solution considering energy changes) $2mgh = \frac{1}{2}mv^2 + \frac{1}{2}2mv^2 + \frac{1}{2}1\dot{\theta}^2$ $\dot{\theta}^2 = \frac{g}{2a}\theta$ $\ddot{\theta} = \frac{g}{2a}$ $\ddot{\theta} = \frac{g}{2a}$ $\ddot{\theta} = \frac{g}{2a}$ (M 1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M 1) (M 1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M 1) (M 1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M 1) (M 1) (M 2) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M 1) (M 2) $\ddot{\theta}^2 = 2\ddot{\theta}\dot{\theta}$ (M 1) (M 2) $\ddot{\theta}^2 = 2\ddot{\theta}\dot{\theta}$ (M 1) (M 1) (M 2) $\ddot{\theta}^2 = \frac{g}{a}\dot{\theta}$ (M 1) (M 1) (M 2) $\ddot{\theta}^2 = \frac{g}{a}\dot{\theta}$ (M 1) if both particles attempted (M 2) (Clear attempt to eliminate T_1, T_2 (M 3) (M 4) (4(a)	$I = \frac{1}{2} \times 10m \times a^2$	A1	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(b)	accelerations of A and C are equal: $f_A = f_C = a \dot{\omega}$ for B : $a(T_2 - T_1) = 5ma^2 \dot{\omega}$ for A : $T_1 = ma \dot{\omega}$	M1A1 M1A1		full credit
(Alternative solution considering energy changes) $2mgh = \frac{1}{2}mv^2 + \frac{1}{2}1d^2$ (M1A2) but $v = a\dot{\theta}$, $h = a\theta$ (B1) $\therefore 2mga\theta = \frac{3}{2}a^2\dot{\theta}^2 + \frac{5}{2}a^2\dot{\theta}^2$ (M1) $g\theta = 2a\dot{\theta}^2$ (A1) $\dot{\theta}^2 = \frac{g}{2a}\theta$ (M1) $2\dot{\theta}\ddot{\theta} = \frac{g}{2a}\dot{\theta}$ (M1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M1) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M2) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M3) $\ddot{\theta}^2 = \frac{g}{2a}\dot{\theta}$ (M3) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M4) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M3) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M3) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M3) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M4) $\ddot{\theta}^2 = 2\ddot{\theta}\theta$ (M3)		$\therefore 2mg - 2ma\dot{\omega} - ma\dot{\omega} = 5ma\dot{\omega}$ $2mg = 8ma\dot{\omega}$	M1	Q	-
$\therefore 2mga\theta = \frac{3}{2}a^{2}\dot{\theta}^{2} + \frac{5}{2}a^{2}\dot{\theta}^{2}$ $g\theta = 2a\dot{\theta}^{2}$ $\dot{\theta}^{2} = \frac{g}{2a}\theta$ $2\dot{\theta}\ddot{\theta} = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta} = \frac{g}{4a}$ $(A1)$ $(A2)$ $(M3)$ $(M4)$ $(M4)$ $(M4)$ $(M4)$ $(M5)$ $(M6)$ $(M7)$ $(M8)$ $(M8)$ $(M9)$ $(M1)$ $(M1)$ $(A1)$ $(A1)$ $(A2)$ $(A3)$ $(A4)$		(Alternative solution considering energy		O	
$g\theta = 2a\dot{\theta}^{2}$ $\dot{\theta}^{2} = \frac{g}{2a}\theta$ $2\dot{\theta}\ddot{\theta} = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta} = \frac{g}{4a}$ $(A1)$ $(M1)$ May assume constant acceleration for full credit using: $\dot{\theta}^{2} = \dot{\theta}_{0}^{2} + 2\ddot{\theta}\theta$ $\dot{\theta}^{2} = 2\ddot{\theta}\theta$ $g\theta = 2a.2\ddot{\theta}\theta$ $\ddot{\theta} = \frac{g}{4a}$ $(A1)$ (8) $\ddot{\theta} = \frac{g}{4a}$		but $v = a \dot{\theta}$, $h = a\theta$	(B1)		May be implied
$\dot{\theta}^2 = \frac{g}{2a}\theta$ $2\dot{\theta} \ddot{\theta} = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta} = \frac{g}{4a}$ (MI) May assume constant acceleration for full credit using: $\dot{\theta}^2 = \dot{\theta}_0^2 + 2\ddot{\theta}\theta$ $\dot{\theta}^2 = 2\ddot{\theta}\theta$ $g\theta = 2a.2\ddot{\theta}\theta$ $\ddot{\theta} = \frac{g}{4a}$		$\therefore 2mga\theta = \frac{3}{2}a^2\dot{\theta}^2 + \frac{5}{2}a^2\dot{\theta}^2$	(M1)		
$2\dot{\theta} \ddot{\theta} = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta} = \frac{g}{4a}$ $(A1)$ (8) $\dot{\theta}^{2} = \dot{\theta}_{0}^{2} + 2\dot{\theta}\theta$ $\dot{\theta}^{2} = 2\ddot{\theta}\theta$ $g\theta = 2a.2\ddot{\theta}\theta$ $\ddot{\theta} = \frac{g}{4a}$		$g\theta = 2a\dot{\theta}^2$	(A1)		
$2\dot{\theta} \ddot{\theta} = \frac{g}{2a}\dot{\theta}$ $\ddot{\theta} = \frac{g}{4a}$ $(A1)$ (8) $\dot{\theta}^{2} = \dot{\theta}_{0}^{2} + 2\dot{\theta}\theta$ $\dot{\theta}^{2} = 2\ddot{\theta}\theta$ $g\theta = 2a.2\ddot{\theta}\theta$ $\ddot{\theta} = \frac{g}{4a}$		$\dot{\theta}^2 = \frac{g}{2a}\theta$	(M1)		l •
		$2\dot{\theta} \ddot{\theta} = \frac{g}{2a}\dot{\theta}$	(A1)	(8)	$\dot{\theta}^2 = 2 \ddot{\theta} \theta$ $g\theta = 2a.2 \ddot{\theta} \theta$
		Total		9	4 <i>a</i>

Mathematics A – Advanced Mark Scheme

MAM3 (Cont)

Q	Solution	Marks	Total	Comments
5(a)	(Using tension in $AB = T_{AB}$, in $BC = T_{BC}$ and in $AC = T_{AC}$) Moments about A :			
	$12 \times 2a\cos 60^{\circ} = Q \times \sqrt{3} \ a\cos 60^{\circ}$ $Q = 8\sqrt{3}$	M1A1 A1	3	
(b)(i)	Resolving along BA at B : $T_{AB} = Q\cos 30^{\circ}$	M1 A1		Resolving in either direction
	$= 8\sqrt{3} \times \frac{\sqrt{3}}{2}$ $= 12$ Resolving along <i>BC</i> at <i>B</i> $T_{BC} = Q\sin 30^{\circ}$	A1 A1		Alternative solution by resolving horizontally and vertically at <i>B</i> ,
	$= 8\sqrt{3} \times \frac{1}{2}$	A1		then solving for T_{AB} T_{BC} full credit.
	$=4\sqrt{3}$	A1	6	
(ii) (iii) (c)	T_{AB} is a tension T_{BC} is a tension Resolving vertically at C :	A1 A1	1 1	Marks in b(ii), b(iii) only awarded if M1 awarded in b(i)
	$12 = 4\sqrt{3} + T_{AC} \times \frac{\sqrt{3}}{2}$	M1		
	$T_{AC} = 4\sqrt{3}$	A1	2	Candidates may solve forces in a different order (e.g. T_{BC} , T_{AC} , T_{AB} , Q) and gain full credit.
	Total		13	

Mark Scheme Advanced – Mathematics A

MAM3 (Cont)

MAM3 (C	Solution	Marks	Total	Comments
6(a)				
U(a)	$I_G = \frac{1}{3} m(3a)^2 = 3ma^2$	M1		Parallel axes
	$I_B = 3ma^2 + ma^2$ $= 4ma^2$	A 1	2	
(b)(i)				
(0)(1)	Rod turned through angle θ : P.E. lost = $mga\sin\theta$			
	\mathcal{F}			
	K.E. gained = $\frac{1}{2}I\dot{\theta}^2$			
	$=2ma^2\dot{\theta}^2$			
	hence, $2ma^2\dot{\theta}^2 = mga\sin\theta$	M1A1		
	$\dot{\alpha}^2 - g\sin\theta$			
	$\dot{\theta}^2 = \frac{g\sin\theta}{2a}$ $\dot{\theta} = \sqrt{\frac{g\sin\theta}{2a}}$			
	$\dot{a} = \sqrt{g \sin \theta}$	A1	3	AG
	$\theta = \sqrt{\frac{2a}{}}$			
(ii)	For the rod in motion:	3.61.1.1		0.1.1100
	$I\ddot{\theta} = mga\cos\theta$	M1A1		Or by differentation of $\dot{\theta}^2$
	$4ma^2\ddot{\theta} = mga\cos\theta$			
	$\ddot{\theta} = \frac{g\cos\theta}{4a}$	A1	3	
	4a			
(iii)	$mg\cos\theta - X = ma\ddot{\theta}$	N/1 A 1		
(111)		M1A1		
	$X = mg\cos\theta - \frac{mag\cos\theta}{4a}$			
	$=\frac{3mg\cos\theta}{4}$	A1	3	
(c)	$Y - mg\sin\theta = ma\dot{\theta}^2$	M1		
	$Y = mg\sin\theta + \frac{mag\sin\theta}{2a}$			
	24			For M1 must be in context with
	$=\frac{3mg\sin\theta}{2}$			attempted substitution
	2	A1		
	At point of slipping			
	$Y = \mu X$ $3m\sigma \sin \theta \qquad 3m\sigma \cos \theta$	M1		AG
	$\frac{3mg\sin\theta}{2} = \mu \frac{3mg\cos\theta}{4}$	A1		
	$\Rightarrow \tan\theta = \frac{\mu}{2}$			
		A1	5	
	Total		16	
	Total		60	