# GCE 2004 June Series



# Mark Scheme

# Mathematics A Unit MAM1/W

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

| Further copies of this Mark Scheme are available from:                                                  |
|---------------------------------------------------------------------------------------------------------|
| Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170 |
| or                                                                                                      |
| download from the AQA website: www.aqa.org.uk                                                           |
| Copyright © 2004 AQA and its licensors                                                                  |
| COPYRIGHT                                                                                               |

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

Dr Michael Cresswell Director General

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

#### **Key to Mark Scheme**

| M                   | mark is formethod                                                 |
|---------------------|-------------------------------------------------------------------|
| m                   | mark is dependent on one or more M marks and is for method        |
| A                   | mark is dependent on M or m marks and is foraccuracy              |
| B                   | mark is independent of M or m marks and is formethod and accuracy |
| E                   | mark is for explanation                                           |
| $\wedge$ or ft or F |                                                                   |
|                     | incorrect result                                                  |
| CAO                 | correct answer only                                               |
| AWFW                |                                                                   |
| AWRT                | anything which rounds to                                          |
| AG                  | answer given                                                      |
|                     | special case                                                      |
| OE                  | or equivalent                                                     |
|                     |                                                                   |
| -x EE               | deduct x marks for each error                                     |
| NMS                 | no method shown                                                   |
| PI                  | possibly implied                                                  |
|                     | substantially correct approach                                    |
| c                   | candidate                                                         |
| SF                  | significant figure(s)                                             |
| DP                  | decimal place(s)                                                  |
|                     |                                                                   |

### **Abbreviations used in Marking**

| deducted x marks for mis-copy |
|-------------------------------|
| deducted x marks for mis-read |
| ignored subsequent working    |
| given benefit of doubt        |
| work replaced by candidate    |
| formulae booklet              |
|                               |

## **Application of Mark Scheme**

#### No method shown:

#### More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out

1 complete and 1 partial attempt, neither crossed out

mark both/all fully and award the mean mark rounded down

award credit for the complete solution only do not mark unless it has not been replaced

Alternative solution using a correct or partially

correct method

Crossed out work

award method and accuracy marks as appropriate

### MAM1/W

| Q Q    | Solution                                                    | Marks | Total | Comments                                                                     |
|--------|-------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------|
| 1(a)   | $v^2 = u^2 + 2as$                                           | M1    |       | Use of full method                                                           |
|        | $0^2 = 3.5^2 + 2 \times a \times 2.5$                       | A1    |       | Correct subs                                                                 |
|        | a = -2.45 mag 2.45                                          | A1    | 3     | Magnitude required                                                           |
| (b)(i) | Friction : $0.2 \times 2.45 = 0.49$ N                       | M1A1  | 2     | M1: use of $F = ma$ with $\pm 2.45$                                          |
|        |                                                             |       |       | A1: Magnitude required                                                       |
| (ii)   | $R = 0.2 \times g$                                          |       |       |                                                                              |
|        | $F = \mu R  0.49 = \mu \times 0.2g$                         | M1    |       | Use of $F = \mu R$ with $R = mg$ substituted                                 |
|        | $\mu = 0.25$                                                | A1F   | 2     | ft (i) provided $\mu$ positive<br>Use of $F < \mu R$ , M1 A0                 |
|        | Total                                                       |       | 7     | pri, mr                                                                      |
| 2(a)   | $\mathbf{v} = 6\mathbf{i} + 2t\mathbf{j}$                   | M1A1  | 2     | M1: differentiation attempted and vector quantity for <b>v</b> given         |
| (b)    | $sp = \sqrt{(6^2 + 4t^2)} \text{ ms}^{-1}$                  | M1A1F | 2     | M1: sum of squares attempted giving scalar expression                        |
|        |                                                             |       |       | A1: all correct, accept $(2t)^2$                                             |
|        |                                                             |       |       | ft v with 2 components                                                       |
| (c)    | $\sqrt{(6^2 + 4t^2)} = 6\sqrt{2}$ $36 + 4t^2 = 36 \times 2$ | M1    |       | o.e.; scalar expression for <b>v</b> in terms of <i>t</i> from (b) used      |
|        | t = 3                                                       | A1F   | 2     | ft minor slip in (b) provided <i>t</i> is positive solution of quadratic eqn |
|        | Total                                                       |       | 6     |                                                                              |
| 3(a)   | $1200 - R = 1000 \times 0.25$                               | M1A1  |       | M1: all relevant terms used                                                  |
|        | R = 950  N                                                  | A1F   | 3     | ft one slip if $R > 0$                                                       |
| (b)    | $2100 - 1000g \times 0.1 - 950 = 1000 \times a$             | M1    |       | M1: 3 or 4 terms considered                                                  |
|        |                                                             | A1A1  |       | $-1$ each term incorrect (any error),or missing, $\alpha = 5.74^{\circ}$     |
|        | $a = 0.17 \text{ ms}^{-2}$                                  | A1F   | 4     | ft one error if 4 terms considered                                           |
|        | Total                                                       |       | 7     | _                                                                            |

MAM1/W (Cont)

| Q Q     | Solution                              | Marks | Total | Comments                                                                                           |
|---------|---------------------------------------|-------|-------|----------------------------------------------------------------------------------------------------|
| 4(a)(i) | T = 0.6a                              | M1    |       | Either equation (M1 A0 for use of 0.1ga)                                                           |
|         | 0.1g - T = 0.1a                       | A1    |       | SC whole string method:                                                                            |
|         |                                       | A1    |       | 0.1g = 0.7a M1A1 (total mass used)                                                                 |
|         | 0.1g = 0.7a                           | m1    |       | a = 1.4 A1, max 3/5)                                                                               |
|         | $a = 1.4 \text{ ms}^{-2}$             | A1    | 5     |                                                                                                    |
| (ii)    | $T = 0.6 \times 1.4 = 0.84 \text{ N}$ | A1    | 1     | Dependent on M1 gained in (a),                                                                     |
|         |                                       |       |       | Or, s.c. can gain M1 (from (a)) A1 here if equations involving <i>T</i> not found in (a) Max M1 A1 |
| (iii)   | T,                                    | B1    |       | recognising 2 tensions involved                                                                    |
|         | R                                     |       |       |                                                                                                    |
|         | $R = 2T\cos 45^{\circ}$               | M1    |       | M1: attempt at Pythagoras or at a component of <i>T</i>                                            |
|         | = 1.19 N                              | A1F   | 3     | A1: f.t. tension                                                                                   |
| (b)     | <i>v</i> <b>↑</b>                     | B1    |       | $1^{st}$ line sloping and through $O$                                                              |
|         |                                       | В1    |       | 2 <sup>nd</sup> line horizontal                                                                    |
|         | $O \stackrel{\downarrow}{q} $         | B1    | 3     | label at $t = q$                                                                                   |
|         | Total                                 |       | 12    |                                                                                                    |

MAM1/W Cont)

| MAM1/W C | Solution                                                                               | Marks    | Total | Comments                                                                                                          |
|----------|----------------------------------------------------------------------------------------|----------|-------|-------------------------------------------------------------------------------------------------------------------|
| 5(a)(i)  | 7.5 m                                                                                  | IVIET RS | 1000  | Comments                                                                                                          |
|          | 5 m                                                                                    |          |       |                                                                                                                   |
|          | Q: $s = ut + \frac{1}{2}at^2$<br>$s = 0 + \frac{1}{2} \times 9.8 \times \frac{25}{49}$ | M1       |       | M1: full method for <i>s</i>                                                                                      |
|          | s = 2.5                                                                                | A1       | 2     | Wit. full method for s                                                                                            |
| (ii)     | 5 + 2.5 = 7.5 so collision occurs                                                      | A1       | 1     |                                                                                                                   |
| (b)      | $Q: v = 0 + 9.8 \times \frac{5}{7}$                                                    | M1       |       | M1: full method for <i>v</i>                                                                                      |
|          | = 7                                                                                    | A1       |       |                                                                                                                   |
|          | $\downarrow -0.2 \times 3.5 + 0.3 \times 7 = 0.5v$                                     | M1A1F    |       | M1: Momentum equation with 3 terms with appropriate masses.                                                       |
|          |                                                                                        |          |       | ft velocity of Q                                                                                                  |
|          | $v = 2.8 \downarrow$                                                                   | A1F      |       | A1F for magnitude                                                                                                 |
|          |                                                                                        |          |       | ft one minor slip in working                                                                                      |
|          |                                                                                        | A1       | 6     | A1 for direction, (may be implied in answer given in vector form with negative component)<br>SC B1 for $v = -2.8$ |
|          | Total                                                                                  |          | 9     |                                                                                                                   |

MAM1/W (Cont)

| MAM1/W (Cont) |                                                  |       |       |                                                                                                                                                                                                                    |  |
|---------------|--------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Q             | Solution                                         | Marks | Total | Comments                                                                                                                                                                                                           |  |
| 6(a)          | $y = \frac{120}{20} = 6 \text{ms}^{-1}$          | В1    | 1     |                                                                                                                                                                                                                    |  |
| (b)           | 1.2<br>60°                                       | M1    |       | Triangle linking 3 velocities, with 1.2 easterly                                                                                                                                                                   |  |
|               | $\alpha$                                         | A1    |       | Correct configuration of velocities, with $x$ east of north and $0 < \alpha < 30^{\circ}$ Must see $x$ or $y$ or $\alpha$ or $30^{\circ}$                                                                          |  |
|               | *30°                                             | A1    | 3     | Arrows and labels of at least 2 sides                                                                                                                                                                              |  |
| (c)           | north $6\cos 30^{\circ} \ (= 5.20) \ (5.196)$    | B1F   |       | Accept $y \cos 30^{\circ}$ and $y \sin 30^{\circ}$ seen anywhere, ft $y$ if substituted                                                                                                                            |  |
|               | east $6\sin 30^{\circ} (=3)$                     | B1F   | 2     |                                                                                                                                                                                                                    |  |
| (d)(i)        | 5.196 1.8                                        |       |       |                                                                                                                                                                                                                    |  |
|               | $x^{2} = 1.8^{2} + 5.196^{2}$                    | M1    |       | Alt: use of cos rule<br>$x^2 = 6^2 + 1.2^2 - 2 \times 6 \times 1.2 \times \cos 60^\circ$<br>x = 5.499                                                                                                              |  |
|               | x = 5.50  km/h                                   | A1    | 2     | AWRT                                                                                                                                                                                                               |  |
| (ii)          | $\tan \alpha = 1.8$ $5.196$                      | M1    |       | M1: any complete method, e.g.:<br>Use of sin rule:<br>Sin $\frac{\beta}{1.2} = \sin 60^{\circ} / 5.5 \ (\beta = 10.9^{\circ})$                                                                                     |  |
|               | $\alpha = 19.1^{\circ} \text{ or } 19.0^{\circ}$ | A1F   | 2     | ft y  Alternative for (c) and (d)  Scale drawing:  Triangle drawn as in (b) M1  North and east lines o.e. drawn in for measurements M1  Velocity components $\pm 1$ mm B1F B1F  f.t. y  Answer for $x \pm 1$ mm A1 |  |
|               | m 4 l                                            |       | 10    | Answer for $\alpha \pm 1^{\circ}$ A1F f.t. y                                                                                                                                                                       |  |
|               | Total                                            |       | 10    |                                                                                                                                                                                                                    |  |

#### MAM1/W (Cont)

| MAM1/W (C | Solution                                                  | Marks | Total | Comments                                                                                                                                                                                                            |
|-----------|-----------------------------------------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(a)      | $15 \times 0.8 \times t = 18$                             | M1A1  |       | M1: must attempt component, and no accel                                                                                                                                                                            |
|           |                                                           |       |       | A1: 0.8 or cos 36.9 seen                                                                                                                                                                                            |
|           | t = 1.5  sec                                              | A1F   | 3     | ft one slip e.g. 0.6 used                                                                                                                                                                                           |
| (b)(i)    | $\sin \theta = 0.6$ or $\theta = 36.9^{\circ}$ or $u = 9$ | B1    |       | Seen, accept 37°                                                                                                                                                                                                    |
|           | v = u + at                                                |       |       |                                                                                                                                                                                                                     |
|           | $v = 15 \times 0.6 - 9.8 \times 1.5$                      | M1A1F |       | M1: full method, must attempt component                                                                                                                                                                             |
|           |                                                           |       |       | ft time, f.t. 0.6, or ' $u = 9$ '                                                                                                                                                                                   |
|           | = - 5.7                                                   | A1F   | 4     | ft one slip a.w.r.t5.7                                                                                                                                                                                              |
|           |                                                           |       |       | Alternative to: 7 (b)(i)                                                                                                                                                                                            |
|           |                                                           |       |       | If vertical displacement found first:<br>$s = 9 \times 1.5 - 4.9 \times (1.5)^2$<br>s = 2.475<br>$v^2 = 9^2 - 2 \times 9.8 \times 2.475$ M1 full method<br>A1F equations correct<br>$v = \pm 5.7$ A1F accept either |
|           |                                                           |       |       | Special case for part (b)(i)                                                                                                                                                                                        |
|           |                                                           |       |       | Re: ruling for repeated attempts; if $-5.7$ is seen as answer to one method, award marks and ignore other methods.                                                                                                  |
| (ii)      | 12                                                        |       |       |                                                                                                                                                                                                                     |
|           | $\theta = \frac{5.7}{12}$                                 | M1    |       | Ratio of velocity components to find an angle                                                                                                                                                                       |
|           | $\theta = 25.4^{\circ}$                                   | A1F   | 2     | Accept ±                                                                                                                                                                                                            |
|           | Total                                                     |       | 9     |                                                                                                                                                                                                                     |
|           | Total                                                     |       | 60    |                                                                                                                                                                                                                     |