

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme January 2004

# GCE

# **Mathematics** A

# **Unit MAS4**

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX. Dr Michael Cresswell Director General

#### AQA

### Key to mark scheme

| Μ          | mark is for                                         | method                               |
|------------|-----------------------------------------------------|--------------------------------------|
| m          | mark is dependent on one or more M marks and is for | method                               |
| Α          | mark is dependent on M or m mark and is for         | accuracy                             |
| В          | mark is independent of M or m marks and is for      | method and accuracy                  |
| Е          | mark is for                                         | explanation                          |
| or ft or F |                                                     | follow through from previous         |
|            |                                                     | incorrect result                     |
| CAO        |                                                     | correct answer only                  |
| AWFW       |                                                     | anything which falls within          |
| AWRT       |                                                     | anything which rounds to             |
| AG         |                                                     | answer given                         |
| SC         |                                                     | special case                         |
| OE         |                                                     | or equivalent                        |
| A2,1       |                                                     | 2 or 1 (or 0) accuracy marks         |
| -x EE      |                                                     | Deduct <i>x</i> marks for each error |
| NMS        |                                                     | No method shown                      |
| PI         |                                                     | Perhaps implied                      |
| c          |                                                     | Candidate                            |
|            |                                                     |                                      |

### Abbreviations used in marking

| MC - x | deducted x marks for miscopy |
|--------|------------------------------|
| MR - x | deducted x marks for misread |
| ISW    | ignored subsequent working   |
| BOD    | gave benefit of doubt        |
| WR     | work replaced by candidate   |

## Application of mark scheme

| Correct answer without working   | mark as in scheme                     |
|----------------------------------|---------------------------------------|
| Incorrect answer without working | zero marks unless specified otherwise |

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

| Q     | Solution                                                                           | Marks    | Total | Comments          |
|-------|------------------------------------------------------------------------------------|----------|-------|-------------------|
| 1     | $S_{xy} = 6140 - \frac{135 \times 301}{6} = -632.5$                                |          |       |                   |
|       | $S_{xx} = 3475 - \frac{135^2}{6} = 437.5$                                          | M1       |       |                   |
|       | $b = -\frac{632.5}{437.5} = -1.446$                                                | A1       |       |                   |
|       | $\overline{x} = \frac{135}{6} = 22.5 \ \overline{y} = \frac{301}{6} = 50.1\dot{6}$ | B1       |       | Both              |
|       | $a = 50.1\dot{6} - (-1.446) \times 22.5 = 82.70$                                   | M1       |       |                   |
|       | y = 82.7 - 1.45x                                                                   | A1       | 5     | AWRT              |
|       | Total                                                                              |          | 5     |                   |
| 2     | $H_0: P = 0.2$ $H_1: P > 0.2$                                                      | B1       |       | Both              |
|       | $X \sim B \text{ in } (20, 0.2)$                                                   | B1       |       | Stated or implied |
|       | $P(X \le 6) = 0.9133$                                                              | M1       |       | Use of tables     |
|       | $P(X \ge 7) = 0.0867$                                                              | A1       |       |                   |
|       | $> 0.05 \Rightarrow$ Retain H <sub>0</sub>                                         |          |       |                   |
|       | So selecting randomly                                                              | A1√      | 5     |                   |
|       | Total                                                                              |          | 5     |                   |
| 3 (a) | A straight line fits the points well                                               | E1       | 1     | OE                |
| (b)   | $S_{wy} = 1812 - \frac{91 \times 190}{6} = -1069 .\dot{6}$                         | B1       |       |                   |
|       | $S_{ww} = 2275 - \frac{91^2}{6} = 894.8\dot{3}$                                    | B1       |       |                   |
|       | $S_{yy} = 7296 - \frac{190^2}{6} = 1279.\dot{3}$                                   | B1       |       |                   |
|       | $r = \frac{-1069.\dot{6}}{\sqrt{894.83 \times 1279.3}} = -0.9997$                  | M1<br>A1 | 5     |                   |
| (c)   | A curve fits almost exactly<br>(or better than the line)                           | E1       | 1     |                   |
|       | Total                                                                              |          | 1     |                   |

| Q        | Solution                                                           |                                 |                              | Marks       | Total     | Comments |                                       |
|----------|--------------------------------------------------------------------|---------------------------------|------------------------------|-------------|-----------|----------|---------------------------------------|
| 4 (a)    | $\frac{160}{500} =$                                                | 0.32                            | $\frac{205}{500} = 0.41$     |             | B1        |          |                                       |
|          | Varianc                                                            | $e = \frac{0.32}{2}$            | $\frac{0.68 + 0.41}{500}$    | × 0.59      | M1<br>A1  |          |                                       |
|          | z = 2.57                                                           | 758                             |                              |             | B1        |          |                                       |
|          | 0.09 <u>+</u>                                                      | 2.5758 v                        | $0.32 \times 0.68 + 0$       | ).41 × 0.59 | M1        |          |                                       |
|          | (0.0119, 0.168)                                                    |                                 |                              |             | A1        | 6        |                                       |
| (b)      | Do not                                                             | agree                           |                              |             | E1√       |          |                                       |
|          | Zero no                                                            | ot within C                     | I                            |             | E1√       | 2        |                                       |
|          |                                                                    |                                 |                              | Total       |           | 8        |                                       |
| 5 (a)(i) | Rank                                                               | Actual                          | Estimate                     | Rank        |           |          |                                       |
|          | 7                                                                  | 140                             | 100                          | 6.5         |           |          |                                       |
|          | 5                                                                  | 210                             | 150                          | 5           |           |          |                                       |
|          | 2                                                                  | 630                             | 500                          | 1.5         | MI        |          | Deuling                               |
|          | 4                                                                  | 320                             | 250                          | 4           | Al        |          | Kanking                               |
|          | 6                                                                  | 160                             | 100                          | 6.5         |           |          |                                       |
|          | 1                                                                  | 700                             | 500                          | 1.5         |           |          |                                       |
|          | 3                                                                  | 450                             | 350                          | 3           |           |          |                                       |
|          | $\sum d^2 =$                                                       | $\frac{1}{4} + 0 + \frac{1}{4}$ | $+0+\frac{1}{4}+\frac{1}{4}$ | + 0         | M1<br>A1  |          |                                       |
|          | $r_s = 1 - \frac{6 \times 1}{7 \times 48} = \frac{55}{56} = 0.982$ |                                 |                              |             | A1        | 5        | Accept $r$ on ranks = 0.982           |
| (ii)     | The trainee estimates order well but<br>underestimates the weight  |                                 |                              |             | E1√<br>E1 | 2        | Accept 'Not close to the true values' |
| (b)      | $H_0: \rho_s = 0$ $H_1: \rho_s > 0$                                |                                 |                              | B1          |           | Both     |                                       |
|          | CV                                                                 | $\rho_s = 0.85$                 | 571                          |             | B1        |          |                                       |
|          | 0.982>                                                             | 0.8571                          |                              |             | M1        |          | Comparing                             |
|          | Reject I                                                           | H <sub>0</sub> so imp           | olying $\rho_s > 0$          |             | A1√       | 4        |                                       |
|          |                                                                    |                                 |                              | Total       |           | 11       |                                       |

| Q  |             | Solution                                                                                                                                                               | Marks | Total | Comments                           |
|----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------|
| 6  | <b>(</b> a) | $0.84 \times 0.16$                                                                                                                                                     | M1    |       |                                    |
| U  | (a)         | $variance = \frac{200}{200}$                                                                                                                                           | A1    |       |                                    |
|    |             | <i>z</i> = 1.96                                                                                                                                                        | B1    |       |                                    |
|    |             | $0.84 \times 0.16$                                                                                                                                                     | M1    |       | SC: Numbers (157.83, 178.16) 3/5   |
|    |             | $0.84 \pm 1.96 \sqrt{\frac{200}{200}}$                                                                                                                                 |       |       |                                    |
|    |             | 1 200                                                                                                                                                                  |       |       |                                    |
|    |             | (0.789, 0.891)                                                                                                                                                         | A1    | 5     |                                    |
|    | (b)         | 19                                                                                                                                                                     | B1    | 1     |                                    |
|    | (c)         | $H_0: P = 0.9$ $H_1: P < 0.9$                                                                                                                                          | B1    |       | Both                               |
|    |             | 0.84 - 0.9                                                                                                                                                             | M1    |       |                                    |
|    |             | $z calc = \frac{1}{\sqrt{0.9 \times 0.1}}$                                                                                                                             | Al    |       | Accept working with numbers        |
|    |             | $\sqrt{\frac{200}{200}}$                                                                                                                                               |       |       |                                    |
|    |             | = -2.828                                                                                                                                                               | A1    |       |                                    |
|    |             | zcrit = -2.3263                                                                                                                                                        | B1    |       |                                    |
|    |             | Reject $H_0 \Rightarrow$ overstating                                                                                                                                   | E1√   | 6     | Allow 'wrong' for 'overstating'    |
|    |             | Total                                                                                                                                                                  |       | 12    |                                    |
| 7  | (a)         | $\mathbf{E}\left(\overline{X}_{1}-\overline{X}_{2}\right)=\mathbf{E}\left(\overline{X}_{1}\right)-\mathbf{E}\left(\overline{X}_{2}\right)$                             | M1    |       |                                    |
|    |             | $=\mu_1-\mu_2$                                                                                                                                                         | A1    | 2     |                                    |
|    |             | $\operatorname{Var}\left(\overline{X}_{1}-\overline{X}_{2}\right) = \operatorname{Var}\left(\overline{X}_{1}\right) + \operatorname{Var}\left(\overline{X}_{2}\right)$ | M1    |       |                                    |
|    |             | $-\frac{\sigma_1^2}{\sigma_1^2}+\frac{\sigma_2^2}{\sigma_2^2}$                                                                                                         | A1    | 2     |                                    |
|    |             | $n_1$ $n_1$                                                                                                                                                            |       |       |                                    |
| (b | ) (i)       | $\sigma_1^2 \sigma_2^2$                                                                                                                                                | M1    |       |                                    |
|    |             | $V = \frac{1}{n_1} + \frac{1}{n_1}$                                                                                                                                    |       |       |                                    |
|    |             | $dv -\sigma_1^2 = \sigma_2^2$                                                                                                                                          | M1    |       |                                    |
|    |             | $\Rightarrow \frac{1}{\mathrm{d}n_1} = \frac{1}{n_1^2} - \frac{1}{(n-n_1)^2} \times (-1)$                                                                              | A1    |       |                                    |
|    |             | $dv = \sigma_1^2 = \sigma_2^2 = \sigma_2^2$                                                                                                                            |       |       |                                    |
|    |             | $dn_1 = 0 = \frac{1}{n_1^2} = \frac{1}{(n-n_1)^2} = \frac{1}{n_2^2}$                                                                                                   | M1    |       |                                    |
|    |             | $\rightarrow n : n = \sigma : \sigma$                                                                                                                                  | A 1   | 5     |                                    |
|    |             | $\rightarrow n_1 \cdot n_2 = o_1 \cdot o_2$                                                                                                                            | AI    | 5     |                                    |
|    | (ii)        | $\frac{\sigma_1}{\sigma} = \sqrt{\frac{0.0025}{0.0081}} = \frac{5}{9}$                                                                                                 | M1    |       |                                    |
|    |             | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                |       |       | 9                                  |
|    |             | $\Rightarrow n_1 = \frac{1}{14} \times 560 = 200$                                                                                                                      | Ml    |       | or $n_2 = \frac{1}{14} \times 560$ |
|    |             | $n_2 = 360$                                                                                                                                                            | A1    | 3     |                                    |
|    |             | Total                                                                                                                                                                  |       | 12    |                                    |
|    |             | Total                                                                                                                                                                  |       | 60    |                                    |